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Summary. In this contribution we report on work done in continuation of [1, 2]
where additive multilevel methods for the construction of preconditioners for the
stiffness matrix of the Ritz- Galerkin procedure were considered with emphasis on
the model problem −∇ω∇u = f with a scalar weight ω.

We present an new approach leading to a preconditioner based on a modification
of the construction in [4] using weighted scalar products thereby improving that one
in [2]. Further we prove an upper bound in the underlying norm equivalencies which
is up to a fixed level completely independent of the weight ω, whereas the lower
bound involves an assumption about the local variation the coefficient function which
is still weaker than in [1]. More details will be presented in a forthcoming paper.

1 Preliminaries

1.1 Ritz -Galerkin-Method

Let Ω be a bounded domain in R2 and H1
0 (Ω) = Y be the Hilbert space defined

as the closure of C∞0 (Ω) with respect to the usual Sobolev norm. Further let A be
an elliptic operator defined on H1

0 (Ω) with an associated coercive and symmetric
bilinear form a(u, v). The Lax-Milgram Theorem guarantees then a unique solution
u ∈ Y of

a(u, v) = (f, v) :=

∫

Ω

f · v dx, ∀v ∈ Y,

for any f ∈ L2(Ω). Define the Ritz -Galerkin approximation uh ∈ Vh ⊂ Y by

a(uh, v) = (f, v), ∀v ∈ Vh.

If ψ1, · · · , ψN is a basis of Vh, uh is obtained by the equations:

N∑

i=1

αi a(ψi, ψk) = (f, ψk), 1 ≤ k ≤ N, uh :=
N∑

i=1

αiψi.

These equations are solved iteratively in the form
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u(ν+1) = u(ν) − ω Cr(ν), ν = 0, 1, 2, · · · (1)

where r(ν) := Au(ν) − b with stiffness matrix A ≡ Aψ :=
(
a(ψi, ψk)

)
i,k

and

b := {(f, ψk)}. Further ω denotes a relaxation factor and C a preconditioner matrix.
The goal is to achieve κ(CA)≪ κ(A) or at least of order O(1) independent of N .

A basic fact is: If C is the matrix associated to operator C : V → V satisfying

γ (u , C−1 u) ≤ a(u, u) ≤ Γ (u , C−1 u), u ∈ V, (2)

then κ(CA) ≤ Γ/γ. Thus C can be taken as a discrete analogue of C or an approxi-
mative inverse of B = C−1.

In the theory of Additive Multi-level-Methods an approach to construct the bi-
linear form with associated B is to assume a hierarchical sequence of subspaces

V0 ⊂ V1 ⊂ · · · ⊂ VJ := Vh ⊂ Y ⊂ X := L2(Ω), (3)

and construct bounded linear projections Qj : V −→ Vj with

β0 a(u, u) ≤
J∑

j=0

d2
j ||Qju−Qj−1u||2X ≤ β1 a(u, u), (4)

with Q0u := 0 and suitable coefficients {dj}. β0, β1 are constants not depending on
the dj , u ∈ Vh or J .
Then define the positive definite operator B = C−1 by

(u , B u) :=

J∑

j=1

d2
j ||Qju−Qj−1u||2X , u ∈ V. (5)

2 A Diffusion Problem as a Model Problem

2.1 Spectral Equivalencies

Let T0 be an initial coarse triangulation of a region Ω ⊂ R2. Regular refinement of
triangles leads to triangulations T0 ⊂ T1 ⊂ · · · ⊂ TJ = T .

Each triangle in Tk is geometrically similar to a triangle of T0. We define then
the {Vj}Jj=1 in (3) as spaces of piecewise linear functions with respect to these
triangulations. Also its elements have to satisfy Dirichlet boundary conditions. In
particular there exists a nodal basis ψ

(j)
k for Vj = span{ψk}.

In the following we consider the model problem

a(u, v) :=

∫

Ω

ω (∇u,∇v) (6)

which correspond s to the differential operator A = ∇ · ω∇.
Observe that in case u, v ∈ Vj , j = 0, 1, · · · , J the bilinear form a(u, v) reduces in
view of ∇v = const. on T ∈ Tj to
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a(u, v) = aj(u, v) :=
∑

T∈Tj

ωT

∫

T

(∇u,∇v) (7)

with average weights

ωT :=
1

µ(T )

∫

T

ωdx, µ(T ) = area of T.

This leads to weighted norms

‖v‖2j,ω :=
∑

T∈Tj

ωT

∫

T

|v|2, ‖v‖ω := ‖v‖J,ω . (8)

Instead of the usual orthogonal projections Qj : V → Vj we define now in
contrast to [1] operators Qωj : V → Vj with level-depending weights by

(Qωj u, v)j,ω = (u, v), ∀v ∈ Vj (9)

and Aωj : Vj → Vj for u ∈ Vj by

(Aωj u, v)j,ω = a(u, v), ∀v ∈ Vj . (10)

Then the following modification of a well-known result in the theory of multilevel
methods (cf. surveys [3, 5] of J. Xu and H. Yserentant) can be proved.

Theorem 1. Suppose that there exists a decomposition u =
∑J
k=0 uk for u ∈ V with

uk ∈ Vk and positive definite operators Bωk : Vk → Vk satisfying

J∑

k=0

(Bωk uk, uk)k,ω ≤ K1 a(u, u), (11)

then Cω :=
∑J
k=0(Bωk )−1Qωk satisfies λmin (CωA) ≥ 1/K1.

If the operators Bωk further satisfy

a(
J∑

k=0

wk,
J∑

l=0

wl) ≤ K2

J∑

k=0

(Bωkwk, wk)k,ω, wk := (Bωk )−1QωkAu (12)

then λmax (CωA) ≤ K2, i.e. the operator Cω is spectrally equivalent to A.

The proof will be given in a forthcoming paper by M. Griebel and M.A. Schweitzer.

For the diffusion problem (6) we can choose the operator Bωk now simply as
Bkuk := 4kuk for uk ∈ Vk, hence

C u :=

J∑

k=0

4−kQωku. (13)

This has several advantages over the approach in [1] which uses direct norm equiva-
lencies like in (4). For spectral equivalence of C with A one needs to prove the upper
inequality (11) in the form
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J∑

k=0

4k(uk, uk)k,ω ≤ K1 a(u, u), (14)

only for some decomposition u =
∑J
k=0 uk. However (12) has to be verified in the

form

a(
J∑

k=0

wk,
J∑

l=0

wl) ≤ K2

J∑

k=0

4k(wk, wk)k,ω, (15)

for any decomposition v =
∑J
k=0 wk, wk ∈ Vk.

These weighted Jackson- and Bernstein inequalities will be verified in the next sec-
tions in a robust form, i.e. the constants depend only weakly from the diffusion
coefficient ω.

Another advantage of the above theorem is that (13) leads to a practical form
for the preconditioning matrix C in (1), namely one shows that the operator C above
is spectrally equivalent to the operator

C̃ :=
J∑

k=0

4−kMω
k , Mω

k v :=
∑

i∈Nk

(v, ψ
(k)
i )

(1, ψ
(k)
i )k,ω

ψ
(k)
i

where {ψ(k)
i }Nk

i=1 denotes the nodal basis of Vk for k ≥ 1. Thus the operators Mω
k u

replace the operators Qωk defined as in (9). The reason for this is that one can show
(up to an absolute constant)

(Qωku, u) ≈
∑

i∈Nk

(u, ψ
(k)
i )2

(1, ψ
(k)
i )k,ω

=

(
u,
∑

i∈Nk

(u, ψ
(k)
i )ψ

(k)
i

(1, ψ
(k)
i )k,ω

)
= (Mω

k u, u).

Details as well as the realization of this conditioner in optimal complexity will be
presented in the forthcoming paper by M. Griebel and M.A. Schweitzer.

We remark that it can be modified still further to obtain a preconditioner

Ĉu :=

J∑

k=0

∑

i∈Nk

(u, ψ
(k)
i )

a(ψ
(k)
i , ψ

(k)
i )

ψ
(k)
i .

2.2 A Weighted Bernstein-Type Inequality

According to (15) we consider here arbitrary decompositions

u =
J∑

k=0

wk, wk ∈ Vk (16)

of an element u ∈ VJ . In the following we employ the a−orthogonal operators
Qaj : VJ → Vj defined by

a(Qaju, v) = a(u, v), u ∈ VJ , v ∈ Vj ,

so that the elements vj := Qaju−Qaj−1u, v0 := Qa0u satisfy
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u =

J∑

=0

vj , a(vk, vj) = δj,k, a(u, u) =

J∑

=0

a(vj , vj). (17)

We introduce then the following assumption on the weight ω : there exists a
constant Cω independent of j and a number ρ < 2 such that for all T ∈ Tj

sup{ωU/ωT : U ∈ Tk, U ⊂ T} ≤ Cω ρ
k−j , j ≤ k. (18)

Lemma 1. Under the above assumption on the weight ω there holds the “hybrid”
Bernstein type inequality

‖vj‖a ≤ 6
√

6 C1

√
C2Cω (2/ρ)j/2

J∑

k=j

(2ρ)k/2 ‖wk‖k,ω (19)

where C1 := maxT∈T0 diam(T ) ≥ maxT∈T0
√
µ(T ), and

C2 := maxT∈T0 diam(T )/
√
µ(T ) are constants which depend on the initial triangu-

lation T0 only.

Proof. In view of the representation u =
∑j−1
k=0 wk we have by (17)

a(vj , vj) = a(vj , u) =
J∑

k=j

a(vj , wk) . (20)

By integration by parts we obtain, keeping in mind that ∇wk,∇vj are constant on
U ∈ Tk and T ∈ Tj , respectively,

a(vj , wk) =
∑

U∈Tk

ωU

∫

U

(∇vj ,∇wk) =
∑

U∈Tk

ωU

∫

∂U

wk(∇vj , n∂U )

=
∑

T∈Tj

∑

U⊂T
ωU

∫

∂U

wk(∇vj , n∂U ) =
∑

T∈Tj

∑

U∈Sk(T )

ωU

∫

∂U

wk(∇vj , n∂U ),

where Sk(T ) denotes the boundary strip along ∂T consisting of triangles U ∈ Tk, U ⊂
T . Applying the Cauchy-Schwarz inequality gives

a(vj , wk) ≤
(∑

T∈Tj

∑

U∈Sk(T )

ωU

∫

∂U

|wk|2
)1/2 (∑

T∈Tj

∑

U∈Sk(T )

ωU

∫

∂U

‖∇vj‖2
)1/2

.

(21)
Concerning the first double sum we note that

∫

∂U

|wk|2 ≤ diam(U)[b21 + b22 + b23] ≤ 12 C2C1 2k
∫

U

|wk|2,

where we have used diam(U) ≤ C2C1 2k µ(U) and the formula

∫

U

|wk|2 =
µ(U)

12
[b21 + b22 + b23 + (b1 + b2 + b3)2]

for linear functions v on U with vertices b1, b2, and b3. It follows that
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∑

T∈Tj

ωT

∫

∂T

|wk|2 ≤
∑

T∈Tj

ωT
∑

U∈Sk(T )

∫

∂U

|wk|2 ≤ 12C2C1 2k‖wk‖2k,ω. (22)

For the second factor in (21) note that by assumption (19) and by the fact that
µ(Sk(T ))/µ(T ) ≤ 6 · 2j−k (cf. [5])

∑

T∈Tj

∑

U∈Sk(T )

ωU

∫

∂U

‖∇vj‖2 ≤ Cω ρ
k−j ∑

T∈Tj

∑

U∈Sk(T )

ωT

∫

∂U

‖∇vj‖2

≤ 3C12k Cω ρ
k−j ∑

T∈Tj

∑

U∈Sk(T )

ωT

∫

U

‖∇vj‖2

≤ 18C12k Cω (ρ/2)k−j
∑

T∈Tj

ωT

∫

T

‖∇vj‖2

Inserting this and (22) into (21) inequality (19) follows by (20).

With the help of this lemma the Bernstein-type inequality (15) can be established.
It improves the corresponding ones in [1, 2] in that assumption (18) is weaker and
at the same time more simple than those made there.

Theorem 2. Consider a sequence of uniformly refined triangulations Tj and the
respective sequence of nested spaces Vj of linear finite elements. Then, under as-
sumption (18) on the weight ω with ρ < 2 in (6) there holds the upper bound

a(u, u) ≤ 432C2
1C2Cω

2

(
√

2−√ρ)2

J∑

j=0

22j ‖wj‖2j,ω (23)

for wj given in (16).

Proof. By summing the estimate (18) according to (17) we get

a(u, u) =
J∑

j=0

‖vj‖2a ≤ 216C2
1 C2Cω (2/ρ)j

( J∑

k=j

(2ρ)k/2 ‖wk‖k,ω
)2

. (24)

From this an upper bound for a(u, u) follows by application of a Hardy inequality
to the latter double sum. If quantities sj , cj are defined by

sj :=
J∑

k=j

ak, s−1 := 0, cj :=

j∑

l=0

bl, cJ+1 := 0

with ak ≥ 0 and b > 1 such an inequality reads

( J∑

j=0

bj s2j

)1/2

≤
√
b√

b− 1

( J∑

j=0

bj a2
j

)1/2

.

Application of this with ak := (2ρ)k/2‖wk‖k,ω and b = 2/ρ to yields

J∑

j=0

(2/ρ)j
( J∑

k=j

(2ρ)k/2 ‖wk‖k,ω
)2

≤ 2

(
√

2−√ρ)2

J∑

j=0

22j ‖wj‖2j,ω

and after insertion into (24) the bound (23) for a(u, u).
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2.3 A Weighted Jackson-Type Inequality

The goal here is to establish inequality (11), i.e. to prove

J∑

k=0

4k‖vk‖k,ω ≤ K1 a(u, u), u ∈ VJ . (25)

By Theorem 2.1 we can employ a particular decomposition of u. We choose

u =
J∑

j=0

vk, vk := Qaju−Qaj−1u as in (17). (26)

The basic idea is as in [1] to prove a local estimate for ‖vj‖j,ω on subdomains U ⊂ Ω
by modifying the duality technique of Aubin-Nitsche. The following result gives an
estimate which improves the corresponding one in [1] in that the constant does not
depend on the weight ω.

Lemma 2. Let U = suppψ
(j−1)
l be the support of a nodal function in Vj−1. There

holds
‖vj‖j,ω,U ≤ diam(U)

(
‖∇vj‖j,ω,U + 18CR ‖vj‖j,ω,U

)
, (27)

where CR is an absolute constant.

Proof: We give only a rough idea of it. For triangles S ∈ Tj with T ⊂ U consider
the Dirichlet problems

−∆φS = vj on S, φS |∂S = ψ
(j−1)
l |∂S .

Then |vj |2 = −vj ·∆φS on U . Partial integration on each S ⊂ U gives

||vj ||2j,ω,U =

∣∣∣∣∣
∑

S⊂U
ωS

∫

S

(∇φS ,∇vj)−
∑

S⊂U
ωS

∫

∂S

vj(∇φS , n∂S)

∣∣∣∣∣ .

The rest of the proof consists in a careful estimate of both terms on the right hand
side. Concerning details we refer again to the forthcoming paper with by M. Griebel
and M.A. Schweitzer. We mention only that the constant CR above arises from the
well-known regularity result

‖φS‖2,2,S ≤ CR ‖vj‖20,S .

⊓⊔

Now by the assumption made on the triangulations there holds diam(U) ≤ C02−j

with a constant C0 depending only on the initial triangulation. Then choose j0 as
the smallest integer with 2j0 = 27

√
3CRC0 and the second term on the right hand

side in (27) is ≤ (2/3)‖vj‖j,ω,U for all j ≥ j0.
If we insert this, square and multiply the resulting inequality with the factor 4j , the
summation with respect to U and j ≥ j0 yields
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Theorem 3. There holds the Jackson-type inequality

J∑

j=j0

4j‖vj‖2j,ω ≤ 9C2
0

J∑

j=j0

∑

U

a(vj , vj)U ≤ 9C2
0

J∑

j=j0

a(vj , vj) (28)

for j0 = log2 (27
√

3CRC0).

If one solves at first the Ritz-Galerkin equations up to level j0−1 the preconditioning
to the levels j ≥ j0 would be robust under condition (18) on the weight ω.

Another possibility would be to establish a bound of the remaining sum on
the left hand side up to level j0 − 1. Here one has to use a different argument at
the expense of a dependence of the corresponding constant on ω. However one can
achieve this under a condition which is weaker than (18).

Corollary 1. Under the condition (18) on the weight ω the discretized version of the
operator C̃ in (13) yields a robust preconditioning in (1) for the diffusion problem.

3 Concluding Remarks

The results represented here are concerned with the classical additive multi-level
method for solving Ritz-Galerkin equations with piecewise linear elements by pre-
conditioning. The proofs given or indicated here for the necessary norm equivalencies
simplify and improve those in [1]. They show that for the diffusion problem a simple
modification (13) of the classical preconditioner makes it robust for a large class of
diffusion coefficients ω. It covers all piecewise constant functions independent of the
location of jumps, their number or their frequency. In particular we do not require
the jumps to be aligned with the mesh on any level , i.e. no mesh must resolve the
jumps.

However the constants in the Jackson- and Bernstein type inequalities involve
the height of the maximal jump. If we assume that mω := minx∈Ω ω(x) = 1,Mω :=
maxx∈Ω ω(x) = ǫ−1 a bound for the constant Cω in assumption (13) is given by ǫ−1.
For most practical purposes it is therefore necessary to assume that Mω is not too
big. By the form of (13) one sees that even singularities of maximal height ρJ and
exponential growth limited by ρ are admissible.
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