Block Diagonal Parareal Preconditioner for Parabolic Optimal Control Problems

Marcus Sarkis ${ }^{1,2}$, Christian E. Schaerer ${ }^{1}$, and Tarek Mathew ${ }^{1}$
${ }^{1}$ IMPA, Dona Castorina 110, Rio de Janeiro, RJ 22460-320, Brazil. \{msarkis, cschaer\}@impa.br
${ }^{2}$ WPI, 100 Institute Road, Worcester, MA 01609, USA.
\{tmathew\}@poonithara.org

Summary. We describe a block matrix iterative algorithm for solving a linearquadratic parabolic optimal control problem (OCP) on a finite time interval. We derive a reduced symmetric indefinite linear system involving the control variables and auxiliary variables, and solve it using a preconditioned MINRES iteration, with a symmetric positive definite block diagonal preconditioner based on the parareal algorithm. Theoretical and numerical results show that the preconditioned algorithm converges at a rate independent of the mesh size h, and has parallel scalability.

1 Introduction

Let (t_{0}, t_{f}) denote a time interval, let $\Omega \subset \mathbb{R}^{2}$ be a polygonal domain of size of order $O(1)$ and let \mathcal{A} be a coercive map from a Hilbert space $L^{2}\left(t_{o}, t_{f} ; Y\right)$ to $L^{2}\left(t_{o}, t_{f} ; Y^{\prime}\right)$, where $Y=H_{0}^{1}(\Omega)$ and $Y^{\prime}=H^{-1}(\Omega)$, i.e., the dual of Y with respect to the pivot space $H=L^{2}(\Omega) ;$ see [2]. Denote the state variable space as $\mathcal{Y}=\left\{z \in L^{2}\left(t_{o}, t_{f} ; Y\right)\right.$: $\left.z_{t} \in L^{2}\left(t_{o}, t_{f} ; Y^{\prime}\right)\right\}$, where it can be shown that $\mathcal{Y} \subset \mathcal{C}^{0}\left(\left[t_{o}, t_{f}\right] ; H\right)$; see [2]. Given $y_{o} \in H$, we consider the following state equation on $\left(t_{0}, t_{f}\right)$ with $z \in \mathcal{Y}$:

$$
\left\{\begin{align*}
z_{t}+\mathcal{A} z & =\mathcal{B} v \text { for } t_{o}<t<t_{f} \tag{1}\\
z(0) & =y_{o}
\end{align*}\right.
$$

The distributed control v belongs to an admissible space $\mathcal{U}=L^{2}\left(t_{o}, t_{f} ; U\right)$, where in our application $U=L^{2}(\Omega)$, and \mathcal{B} is an operator in $\mathcal{L}\left(\mathcal{U}, L^{2}\left(t_{o}, t_{f} ; H\right)\right)$. It can be shown that the problem (1) is well posed, see [2], and we indicate the dependence of z on $v \in \mathcal{U}$ using the notation $z(v)$. Given a target function \hat{y} in $L^{2}\left(t_{o}, t_{f} ; H\right)$ and parameters $q>0, r>0$, we shall employ the following cost function which we associate with the state equation (1):

$$
\begin{equation*}
J(z(v), v):=\frac{q}{2} \int_{t_{0}}^{t_{f}}\|z(v)(t, .)-\hat{y}(t, \cdot)\|_{L^{2}(\Omega)}^{2} d t+\frac{r}{2} \int_{t_{0}}^{t_{f}}\|v(t, \cdot)\|_{L^{2}(\Omega)}^{2} d t \tag{2}
\end{equation*}
$$

For simplicity of presentation, we assume that $y_{o} \in Y$ and $\hat{y} \in L^{2}\left(t_{o}, t_{f} ; Y\right)$, and normalize $q=1$. The optimal control problem for equation (1) consists of finding a
controller $u \in \mathcal{U}$ which minimizes the cost function (2):

$$
\begin{equation*}
J(y, u):=\min _{v \in \mathcal{U}} J(z(v), v) \tag{3}
\end{equation*}
$$

Since $q, r>0$, the optimal control problem (3) is well posed, see [2].
Our presentation is organized as follows: In § 2 we discretize (3) using a finite element method and backward Euler discretization, yielding a large scale saddle point system. In § 3, we introduce and analyze a symmetric positive definite block diagonal preconditioner for the saddle point system, based on the parareal algorithm [3]. In $\S 4$, we present numerical results which illustrate the scalability of the algorithm.

2 The Discretization and the Saddle Point System

To discretize the state equation (1) in space, we apply the finite element method to its weak formulation for each fixed $t \in\left(t_{o}, t_{f}\right)$. We choose a quasi-uniform triangulation $\mathcal{T}_{h}(\Omega)$ of Ω, and employ the \mathbb{P}_{1} conforming finite element space $Y_{h} \subset Y$ for $z(t, \cdot)$, and the \mathbb{P}_{0} finite element space $U_{h} \subset U$ for approximating $v(t, \cdot)$. Let $\left\{\phi_{j}\right\}_{j=1}^{\hat{q}}$ and $\left\{\psi_{j}\right\}_{j=1}^{\hat{p}}$ denote the standard basis functions for Y_{h} and U_{h}, respectively. Throughout the paper we use the same notation $z \in Y_{h}$ and $z \in \mathbb{R}^{\hat{q}}$, or $v \in U_{h}$ and $v \in$ $\mathbb{R}^{\hat{p}}$, to denote both a finite element function in space and its corresponding vector representation. To indicate their time dependence we denote \underline{z} and \underline{v}.

A discretization in space of the continuous time linear-quadratic optimal control problem will seek to minimize the following quadratic functional:

$$
\begin{equation*}
J_{h}(\underline{z}, \underline{v}):=\frac{1}{2} \int_{t_{o}}^{t_{f}}(\underline{z}-\underline{\hat{y}})^{T}(t) M_{h}(\underline{z}-\underline{\hat{y}})(t) d t+\frac{r}{2} \int_{t_{o}}^{t_{f}} \underline{v}^{T}(t) R_{h} \underline{v}(t) d t \tag{4}
\end{equation*}
$$

subject to the constraint that \underline{z} satisfies the discrete equation of state:

$$
\begin{equation*}
M_{h} \underline{\dot{z}}+A_{h} \underline{z}=B_{h} \underline{v}, \text { for } t_{o}<t<t_{f} ; \text { and } \underline{z}\left(t_{o}\right)=y_{o}^{h} \tag{5}
\end{equation*}
$$

Here $\left(\underline{z}-\hat{y}^{h}\right)(t)$ denotes the tracking error, where $\hat{y}^{h}(t)$ and y_{0}^{h} belong to Y_{h} and are approximations of $\hat{y}(t)$ and y_{o} (for instance, use $\overline{L^{2}}(\Omega)$-projections into Y_{h}). The matrices $M_{h}, A_{h} \in \mathbb{R}_{h}^{\hat{q} \times \hat{q}}, B_{h} \in \mathbb{R}^{\hat{q} \times \hat{p}}$ and $R_{h} \in \mathbb{R}^{\hat{p} \times \hat{p}}$ have entries $\left(M_{h}\right)_{i j}:=\left(\phi_{i}, \phi_{j}\right)$, $\left(A_{h}\right)_{i j}:=\left(\phi_{i}, \mathcal{A} \phi_{j}\right)$, and $\left(B_{h}\right)_{i j}:=\left(\phi_{i}, \mathcal{B} \psi_{j}\right)$ and $\left(R_{h}\right)_{i j}:=\left(\psi_{i}, \psi_{j}\right)$, where (\cdot, \cdot) denotes the $L^{2}(\Omega)$ inner product.

To obtain a temporal discretization of (4) and (5), we partition $\left[t_{o}, t_{f}\right]$ into \hat{l} equal sub-intervals with time step size $\tau=\left(t_{f}-t_{o}\right) / \hat{l}$. We denote $t_{l}=t_{o}+l \tau$ for $0 \leq l \leq \hat{l}$. Associated with this partition, we assume that the state variable \underline{z} is continuous in $\left[t_{o}, t_{f}\right]$ and linear in each sub-interval $\left[t_{l-1}, t_{l}\right], 1 \leq l \leq \hat{l}$ with associated basis functions $\left\{\vartheta_{l}\right\}_{l=0}^{\hat{l}}$. Denoting $z_{l} \in \mathbb{R}^{\hat{q}}$ as the nodal representation of $\underline{z}\left(t_{l}\right)$ we have $\underline{z}(t)=\sum_{l=0}^{\hat{l}} z_{l} \vartheta_{l}(t)$. The control variable \underline{v} is assumed to be a discontinuous function and constant in each sub-interval (t_{l-1}, t_{l}) with associated basis functions $\left\{\chi_{l}\right\}_{l=1}^{\hat{l}}$. Denoting $v_{l} \in \mathbb{R}^{\hat{p}}$ as the nodal representation of $\underline{v}\left(t_{l}-(\tau / 2)\right)$, we have $\underline{v}(t)=\sum_{l=1}^{\hat{l}} v_{l} \chi_{l}(t)$.

The corresponding discretization of the expression (4) results in:

$$
\begin{equation*}
J_{h}^{\tau}(\mathbf{z}, \mathbf{v})=\frac{1}{2}(\mathbf{z}-\hat{\mathbf{y}})^{T} \mathbf{K}(\mathbf{z}-\hat{\mathbf{y}})+\frac{1}{2} \mathbf{v}^{T} \mathbf{G} \mathbf{v}+(\mathbf{z}-\hat{\mathbf{y}})^{T} \mathbf{g} . \tag{6}
\end{equation*}
$$

The block vectors $\mathbf{z}:=\left[z_{1}^{T}, \ldots, z_{\hat{l}}^{T}\right]^{T} \in \mathbb{R}^{\hat{l} \hat{q}}$ and $\mathbf{v}:=\left[v_{1}^{T}, \ldots, v_{\hat{l}}^{T}\right]^{T} \in \mathbb{R}^{\hat{l} \hat{p}}$ denote the state and control variables, respectively, at all the discrete times. The discrete target is $\hat{\mathbf{y}}:=\left[\hat{y}_{1}^{T}, \ldots, \hat{y}_{\hat{l}}^{T}\right]^{T} \in \mathbb{R}^{\hat{l} \hat{q}}$ with target error $e_{l}=\left(z_{l}-\hat{y}_{l}^{h}\right)$ for $0 \leq l \leq \hat{l}$. Matrix $\mathbf{K}=D_{\tau} \otimes M_{h} \in \mathbb{R}^{(\hat{l} \hat{q}) \times(\hat{l} \hat{q})}$, where $D_{\tau} \in \mathbb{R}^{\hat{l} \times \hat{l}}$ has entries $\left(D_{\tau}\right)_{i j}:=\int_{t_{o}}^{t_{f}} \vartheta_{i}(t) \vartheta_{j}(t) d t$, for $1 \leq i, j \leq \hat{l}$, while $\mathbf{G}=r \tau I_{\hat{l}} \otimes R_{h} \in \mathbb{R}^{(\hat{l} \hat{p}) \times(\hat{l} \hat{p})}$, where \otimes stands for the Kronecker product and $I_{\hat{l}} \in \mathbb{R}^{\hat{l} \times \hat{l}}$ is an identity matrix. The vector $\mathbf{g}=\left(g_{1}^{T}, 0^{T}, \ldots, 0^{T}\right)^{T}$ where $g_{1}=\frac{\tau}{6} M_{h} e_{0}$. Note that g_{1} does not necessarily vanish because it is not assumed that $y_{0}^{h}=\hat{y}_{0}^{h}$.

Employing the backward Euler discretization of (5) in time, yields:

$$
\begin{equation*}
\mathbf{E} \mathbf{z}+\mathbf{N} \mathbf{v}=\mathbf{f} \tag{7}
\end{equation*}
$$

where the input vector is $\mathbf{f}:=\left[\left(M_{h} y_{0}^{h}\right)^{T}, 0^{T}, \ldots, 0^{T}\right]^{T} \in \mathbb{R}^{\hat{l} \hat{q}}$. The block lower bidiagonal matrix $\mathbf{E} \in \mathbb{R}^{(\hat{l} \hat{q}) \times(\hat{l} \hat{q})}$ is given by:

$$
\mathbf{E}=\left[\begin{array}{cccc}
F_{h} & & & \tag{8}\\
-M_{h} & F_{h} & & \\
& \ddots & \ddots & \\
& & -M_{h} & F_{h}
\end{array}\right]
$$

where $F_{h}=\left(M_{h}+\tau A_{h}\right) \in \mathbb{R}^{\hat{q} \times \hat{q}}$. The block diagonal matrix $\mathbf{N} \in \mathbb{R}^{(\hat{l} \hat{q}) \times(\hat{l} \hat{p})}$ is given by $\mathbf{N}=-\tau I_{\hat{l}} \otimes B_{h}$. The Lagrangian $\mathcal{L}_{h}(\mathbf{z}, \mathbf{v}, \mathbf{q})$ for minimizing (6) subject to constraint (7) is:

$$
\begin{equation*}
\mathcal{L}_{h}^{\tau}(\mathbf{z}, \mathbf{v}, \mathbf{q})=J_{h}^{\tau}(\mathbf{z}, \mathbf{v})+\mathbf{q}^{T}(\mathbf{E z}+\mathbf{N} \mathbf{v}-\mathbf{f}) \tag{9}
\end{equation*}
$$

To obtain a discrete saddle point formulation of (9), we apply optimality conditions for $\mathcal{L}_{h}(\cdot, \cdot, \cdot)$. This yields the symmetric indefinite linear system:

$$
\left[\begin{array}{ccc}
\mathbf{K} & \mathbf{0} & \mathbf{E}^{T} \tag{10}\\
\mathbf{0} & \mathbf{G} & \mathbf{N}^{T} \\
\mathbf{E} & \mathbf{N} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{u} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{K} \hat{\mathbf{y}}-\mathbf{g} \\
\mathbf{0} \\
\mathbf{f}
\end{array}\right]
$$

where $\hat{\mathbf{y}}:=\left[\left(\hat{y}_{1}^{h}\right)^{T}, \ldots,\left(\hat{y}_{\hat{l}}^{h}\right)^{T}\right]^{T} \in \mathbb{R}^{\hat{l} \hat{q}}$. Eliminating \mathbf{y} and \mathbf{p} in (10), and defining $\mathbf{b}:=\mathbf{N}^{T} \mathbf{E}^{-T}\left(\mathbf{K} \mathbf{E}^{-1} \mathbf{f}-\mathbf{K} \hat{\mathbf{y}}+\mathbf{g}\right)$ yields the reduced Hessian system:

$$
\begin{equation*}
\left(\mathbf{G}+\mathbf{N}^{T} \mathbf{E}^{-T} \mathbf{K} \mathbf{E}^{-1} \mathbf{N}\right) \mathbf{u}=\mathbf{b} \tag{11}
\end{equation*}
$$

The matrix $\mathbf{H}:=\mathbf{G}+\mathbf{N}^{T} \mathbf{E}^{-T} \mathbf{K} \mathbf{E}^{-1} \mathbf{N}$ is symmetric positive definite and $(\mathbf{u}, \mathbf{G u}) \leq$ $(\mathbf{u}, \mathbf{H u}) \leq \mu(\mathbf{u}, \mathbf{G u})$, where $\mu=O\left(1+\frac{1}{r}\right)$; for details see [4]. As a result, the Preconditioned Conjugate Gradient method (PCG) can be used to solve (11), but each matrix-vector product with \mathbf{H} requires the solution of two linear systems, one with \mathbf{E} and one with \mathbf{E}^{T}. To avoid double iterations, we define the auxiliary variable $\mathbf{w}:=-\mathbf{E}^{-T} \mathbf{K} \mathbf{E}^{-1} \mathbf{N u}$. Then (11) will be equivalent to the symmetric indefinite system:

$$
\left[\begin{array}{lr}
\mathbf{E K}^{-1} \mathbf{E}^{T} & \mathbf{N} \tag{12}\\
\mathbf{N}^{T} & -\mathbf{G}
\end{array}\right]\left[\begin{array}{l}
\mathbf{w} \\
\mathbf{u}
\end{array}\right]=\left[\begin{array}{r}
\mathbf{0} \\
-\mathbf{b}
\end{array}\right]
$$

The system (12) is ill-conditioned and will be solved using the MINRES algorithm with a preconditioner of the form $\mathbf{P}:=\operatorname{diag}\left(\mathbf{E}_{n}^{-T} \hat{\mathbf{K}} \mathbf{E}_{n}^{-1}, \mathbf{G}^{-1}\right)$; see [5]. For a fixed number of parareal sweeps n, \mathbf{E}_{n}^{-1} and \mathbf{E}_{n}^{-T} are linear operators. We next define the operator \mathbf{E}_{n}^{-1} and then analyze the spectral equivalence between $\mathbf{E}^{-T} \mathbf{K} \mathbf{E}^{-1}$ and $\mathbf{E}_{n}^{-T} \hat{\mathbf{K}} \mathbf{E}_{n}^{-1}$.

3 Parareal Approximation $\mathbf{E}_{n}^{-T} \hat{\mathbf{K}} \mathbf{E}_{n}^{-1}$

An application of $\mathbf{E}_{n}^{-T} \hat{\mathbf{K}} \mathbf{E}_{n}^{-1}$ to a vector $\mathbf{s} \in \mathbb{R}^{(\hat{\imath} \hat{q}) \times(\hat{l} \hat{q})}$ is performed as follows: Step 1, apply $\mathbf{E}_{n}^{-1} \mathbf{s}: \rightarrow \hat{\mathbf{z}}^{n}$ using n applications of the parareal method described below. Step 2, multiply $\hat{\mathbf{K}} \mathbf{z}^{n}: \rightarrow \hat{\mathbf{t}}$ where $\hat{\mathbf{K}}:=\hat{D}_{\tau} \otimes M_{h}, \hat{D}_{\tau}:=\operatorname{blockdiag}\left(\hat{D}_{\tau}^{1}, \ldots, \hat{D}_{\tau}^{\hat{k}}\right)$, and the \hat{D}_{τ}^{k} are the time mass matrices associated to the sub-intervals $\left[T_{k-1}, T_{k}\right]$. And Step 3, apply $\mathbf{E}_{n}^{-T} \hat{\mathbf{t}}^{n}: \rightarrow \mathbf{x}$, i.e., the transpose of Step 1.

To describe \mathbf{E}_{n}, we partition the time interval $\left[t_{o}, t_{f}\right]$ into \hat{k} coarse sub-intervals of length $\Delta T=\left(t_{f}-t_{o}\right) / \hat{k}$, setting $T_{0}=t_{o}$ and $T_{k}=t_{o}+k \Delta T$ for $1 \leq k \leq \hat{k}$. We define fine and coarse propagators F and G as follows. The local solution at T_{k} is defined marching the backward Euler method from T_{k-1} to T_{k} on the fine triangulation τ with an initial data Z_{k-1} at T_{k-1}. Let $\hat{m}=\left(T_{k}-T_{k-1}\right) / \tau$ and $j_{k-1}=\frac{T_{k-1}-T_{0}}{\tau}$. It it is easy to see that:

$$
\begin{equation*}
M_{h} Z_{k}=F Z_{k-1}+S_{k}, \tag{13}
\end{equation*}
$$

where $F:=\left(M_{h} F_{h}^{-1}\right)^{\hat{m}} M_{h} \in \mathbb{R}^{\hat{q} \times \hat{q}}, S_{k}:=\sum_{m=1}^{\hat{m}}\left(M_{h} F_{h}^{-1}\right)^{\hat{m}-m+1} s_{j_{k-1}+m}$ with $Z_{0}=0$. Imposing the continuity condition at time T_{k}, for $1 \leq k \leq \hat{k}$, i.e., $M_{h} Z_{k}-$ $F Z_{k-1}-S_{k}=0$, we obtain the system:

$$
\left[\begin{array}{ccccc}
M_{h} & & & & \tag{14}\\
-F & M_{h} & & & \\
& \ddots & \ddots & \\
& & -F & M_{h}
\end{array}\right]\left[\begin{array}{c}
Z_{1} \\
Z_{2} \\
\vdots \\
Z_{\hat{k}}
\end{array}\right]=\left[\begin{array}{c}
S_{1} \\
S_{2} \\
\vdots \\
S_{\hat{k}}
\end{array}\right] .
$$

The coarse solution at T_{k} with initial data $Z_{k-1} \in \mathbb{R}^{\hat{q}}$ at T_{k-1} is given by one coarse time step of the backward Euler method $M_{h} Z_{k}=G Z_{k-1}$ where $G:=$ $M_{h}\left(M_{h}+A_{h} \Delta T\right)^{-1} M_{h} \in \mathbb{R}^{\hat{q} \times \hat{q}}$. In the parareal algorithm, the coarse propagator G is used for preconditioning the system (14) via:

$$
\left[\begin{array}{c}
Z_{1}^{n+1} \tag{15}\\
Z_{2}^{n+1} \\
\vdots \\
Z_{\hat{k}}^{n+1}
\end{array}\right]=\left[\begin{array}{c}
Z_{1}^{n} \\
Z_{2}^{n} \\
\vdots \\
Z_{\hat{k}}^{n}
\end{array}\right]+\left(\left[\begin{array}{cccc}
M_{h} & & & \\
-G & M_{h} & & \\
& \ddots & \ddots & \\
& & -G & M_{h}
\end{array}\right]\right)^{-1}\left[\begin{array}{c}
R_{1}^{n} \\
R_{2}^{n} \\
\vdots \\
R_{\hat{k}}^{n}
\end{array}\right]
$$

where the residual vector $\mathbf{R}^{n}:=\left[R_{1}^{n T}, \ldots, R_{\hat{k}}^{n T}\right]^{T} \in \mathbb{R}^{\hat{k} \hat{q}}$ is defined in the usual way from the equation (14).

We are now in position to define $\hat{\mathbf{z}}^{n}:=\mathbf{E}_{n}^{-1}$ s. Let $\hat{\mathbf{z}}^{n}$ be the nodal representation of a piecewise linear function $\hat{\underline{z}}^{n}$ in time with respect to the fine triangulation τ on [$\left.t_{o}, t_{f}\right]$, however continuous only inside each coarse sub-interval $\left[T_{k-1}, T_{k}\right]$, i.e., the function $\hat{\underline{z}}^{n}$ can be discontinuous across the points $T_{k}, 1 \leq k \leq \hat{k}-1$, therefore, $\hat{\mathbf{z}}^{n} \in \mathbb{R}^{(\hat{l}+\hat{k}-1) \hat{q}}$. On each sub-interval $\left[T_{k-1}, T_{k}\right], \underline{\hat{z}}^{n}$ is defined marching the backward Euler method from T_{k-1} to T_{k} on the fine triangulation τ with initial condition Z_{k-1}^{n} at T_{k-1}.

Theorem 1. For any $\mathbf{s} \in \mathbb{R}^{(\hat{\imath} \hat{q}) \times(\hat{\imath} \hat{q})}$ and $\epsilon \in(0,1 / 2)$, we have:

$$
\gamma_{\min }\left(\mathbf{E}^{-1} \mathbf{s}, \mathbf{K} \mathbf{E}^{-1} \mathbf{s}\right) \leq\left(\mathbf{E}_{n}^{-1} \mathbf{s}, \hat{\mathbf{K}} \mathbf{E}_{n}^{-1} \mathbf{s}\right) \leq \gamma_{\max }\left(\mathbf{E}^{-1} \mathbf{s}, \mathbf{K E}^{-1} \mathbf{s}\right),
$$

$$
\text { where }\left\{\begin{array}{l}
\gamma_{\max }:=\left(1+\frac{\rho_{n}^{2}\left(t_{f}-t_{o}\right)}{\tau \epsilon}+2 \epsilon\right) /(1-2 \epsilon), \\
\gamma_{\min }:=\left(1-\frac{\rho_{n}^{2}\left(t_{f}-t_{o}\right)}{\tau \epsilon}-2 \epsilon\right) /(1+2 \epsilon)
\end{array}\right.
$$

Proof. Let $V_{h}:=\left[v_{1}, \ldots, v_{\hat{q}}\right]$ and $\Lambda_{h}:=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{\hat{q}}\right]$ be the generalized eigenvectors and eigenvalues of A_{h} with respect to M_{h}, i.e., $A_{h}=M_{h} V_{h} \Lambda_{h} V_{h}^{-1}$. Let $\mathbf{z}:=\mathbf{E}^{-1} \mathbf{s}$ with $\underline{z}(t)=\sum_{q=1}^{\hat{q}} \alpha_{q}(t) v_{q}$, and $\hat{\mathbf{z}}^{n}:=\mathbf{E}_{n}^{-1} \mathbf{s}$ with $\underline{\hat{z}}^{n}(t)=\sum_{q=1}^{\hat{q}} \alpha_{q}^{n}(t) v_{q}$. We note that α_{q}^{n} might be discontinuous across the T_{k}. Then:

$$
\begin{aligned}
& \left(\mathbf{E}^{-1} \mathbf{s}, \mathbf{K} \mathbf{E}^{-1} \mathbf{s}\right)=\|\underline{z}\|_{L^{2}\left(t_{o}, t_{f} ; L^{2}(\Omega)\right)}^{2}=\sum_{q=1}^{\hat{q}}\left\|\alpha_{q}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2}, \\
& \left(\mathbf{E}_{n}^{-1} \mathbf{s}, \hat{\mathbf{K}} \mathbf{E}_{n}^{-1} \mathbf{s}\right)=\left\|\underline{\hat{z}}^{n}\right\|_{L^{2}\left(t_{o}, t_{f} ; L^{2}(\Omega)\right)}^{2}=\sum_{q=1}^{\hat{q}}\left\|\alpha_{q}^{n}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2},
\end{aligned}
$$

and therefore:

$$
\begin{aligned}
\left\|\alpha_{q}^{n}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2} & =\left(\alpha_{q}^{n}-\alpha_{q}, \alpha_{q}^{n}+\alpha_{q}\right)_{L^{2}\left(t_{o}, t_{f}\right)}+\left\|\alpha_{q}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2} \\
& \leq \frac{1}{4 \epsilon}\left\|\alpha_{q}^{n}-\alpha_{q}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2}+\epsilon\left\|\alpha_{q}^{n}+\alpha_{q}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2}+\left\|\alpha_{q}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2} \\
& \leq \frac{1}{4 \epsilon}\left\|\alpha_{q}^{n}-\alpha_{q}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2}+2 \epsilon\left\|\alpha_{q}^{n}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2}+(1+2 \epsilon)\left\|\alpha_{q}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2}
\end{aligned}
$$

which reduces to:

$$
(1-2 \epsilon)\left\|\alpha_{q}^{n}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2} \leq(1+2 \epsilon)\left\|\alpha_{q}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2}+\frac{1}{4 \epsilon}\left\|\alpha_{q}^{n}-\alpha_{q}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2} .
$$

For each $t_{l} \in\left[T_{k-1}, T_{k}\right]$ we have:

$$
\left|\alpha_{q}^{n}\left(t_{l}\right)-\alpha_{q}\left(t_{l}\right)\right|=\left(1+\tau \lambda_{q}\right)^{-\left(t_{l}-T_{k-1}\right) / \tau}\left|\alpha_{q}^{n}\left(T_{k-1}\right)-\alpha_{q}\left(T_{k-1}\right)\right|
$$

and since $\lambda_{q}>0$ implies $\left(1+\tau \lambda_{q}\right)^{-\left(t_{l}-T_{k-1}\right) / \tau} \leq 1$, we obtain:

$$
\left\|\alpha_{q}^{n}-\alpha_{q}\right\|_{L^{2}\left(T_{k-1}, T_{k}\right)}^{2} \leq \Delta T\left|\alpha_{q}^{n}\left(T_{k-1}\right)-\alpha_{q}\left(T_{k-1}\right)\right|^{2}
$$

Hence:

$$
(1-2 \epsilon)\left\|\alpha_{q}^{n}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2} \leq(1+2 \epsilon)\left\|\alpha_{q}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2}+\frac{t_{f}-t_{o}}{4 \epsilon} \max _{0 \leq k \leq k}\left|\alpha_{q}^{n}\left(T_{k}\right)-\alpha_{q}\left(T_{k}\right)\right|^{2}
$$

Using the Lemma 1 (see below) with $\alpha_{q}\left(T_{0}\right)=0$ and initial guess $\alpha_{q}^{0}\left(T_{k}\right)=0$, and using

$$
\max _{0 \leq k \leq \hat{k}}\left|\alpha_{q}\left(T_{k}\right)\right|^{2}=\left|\alpha_{q}\left(T_{k^{\prime}}\right)\right|^{2} \leq \frac{4}{\tau} \min _{\beta}\left\|\alpha_{q}\left(T_{k^{\prime}}\right)+\beta t\right\|_{L^{2}\left(T_{k^{\prime}}, T_{k^{\prime}}+\tau\right)}^{2}
$$

we obtain:

$$
\max _{0 \leq k \leq \hat{k}}\left|\alpha_{q}^{n}\left(T_{k}\right)-\alpha_{q}\left(T_{k}\right)\right|^{2} \leq \rho_{n}^{2} \max _{0 \leq k \leq \hat{k}}\left|\alpha_{q}\left(T_{k}\right)\right|^{2} \leq \frac{4 \rho_{n}^{2}}{\tau}\left\|\alpha_{q}\right\|_{L^{2}\left(t_{o}, t_{f}\right)}^{2}
$$

and the upper bound (16) follows. The lower bound follows similarly.

Remark 1. Performing straightforward computations we obtain:

$$
\min _{\epsilon} \gamma_{\max }(\epsilon)=1+\frac{4}{\sqrt{1+\frac{\tau}{\rho_{n}^{2}\left(t_{f}-t_{o}\right)}}-1}
$$

Hence, for small values of ρ_{n}, we have $\gamma_{\max }-1 \approx 4 \sqrt{\frac{\rho_{n}^{2}\left(t_{f}-t_{o}\right)}{\tau}}$. The dependence of $\gamma_{\max }-1$ with respect to τ is sharp as evidenced in Table 1 (see below) since it increases by a $\sqrt{2}$ factor when τ is refined by half.

Decompose $Z_{k}=\sum_{q=1}^{\hat{q}} \alpha_{q}\left(T_{k}\right) v_{q}$ and $Z_{k}^{n}=\sum_{q=1}^{\hat{q}} \alpha_{q}^{n}\left(T_{k}\right) v_{q}$, and denote $\zeta_{q}^{n}\left(T_{k}\right):=\alpha_{q}\left(T_{k}\right)-\alpha_{q}^{n}\left(T_{k}\right)$. The convergence of the parareal algorithm for systems follows from the next lemma which it is an extension of the results presented in [1].
Lemma 1. Let $\Delta T=\left(t_{f}-t_{o}\right) / \hat{k}$ and $T_{k}=t_{o}+k \Delta T$ for $0 \leq k \leq \hat{k}$. Then,

$$
\max _{1 \leq k \leq \hat{k}}\left|\alpha_{q}\left(T_{k}\right)-\alpha_{q}^{n}\left(T_{k}\right)\right| \leq \rho_{n} \max _{1 \leq k \leq \hat{k}}\left|\alpha_{q}\left(T_{k}\right)-\alpha_{q}^{0}\left(T_{k}\right)\right|
$$

where $\rho_{n}:=\sup _{0<\beta<1}\left(e^{1-1 / \beta}-\beta\right)^{n} \frac{1}{n!}\left|\frac{d^{n-1}}{d \beta^{n-1}}\left(\frac{1-\beta^{\hat{k}-1}}{1-\beta}\right)\right| \leq 0.2984^{n}$.
Proof. Using Theorem 2 from [1] we obtain:

$$
\begin{equation*}
\zeta_{q}^{n}=\left(\left(1+\lambda_{q} \tau\right)^{-\Delta T / \tau}-\beta_{q}\right) \mathcal{T}\left(\beta_{q}\right) \zeta_{q}^{n-1} \tag{16}
\end{equation*}
$$

where $\beta_{q}:=\left(1+\lambda_{q} \Delta T\right)^{-1}$ and $\mathcal{T}(\beta):=\left\{\beta^{j-i-1}\right.$ if $j>i, 0$ otherwise $\}$ is a Toeplitz matrix of size \hat{k}. Applying (16) recursively we obtain:

$$
\max _{1 \leq k \leq \hat{k}}\left|\zeta_{q}^{n}\right| \leq \rho_{n}^{q} \max _{1 \leq k \leq \hat{k}}\left|\zeta_{q}^{0}\right|
$$

where:

$$
\begin{equation*}
\rho_{n}^{q}:=\left\|\left(\left(1+\lambda_{q} \tau\right)^{-\Delta T / \tau}-\beta_{q}\right)^{n} \mathcal{T}^{n}\left(\beta_{q}\right)\right\|_{L^{\infty}} \tag{17}
\end{equation*}
$$

Since $\lambda_{q}>0$ and $\beta_{q} \leq\left(1+\lambda_{q} \Delta T\right)^{-\Delta T / \tau} \leq e^{-\lambda_{q} \Delta T}$, we obtain

$$
\begin{equation*}
\left|\left(1+\lambda_{q} \tau\right)^{-\Delta T / \tau}-\beta_{q}\right| \leq\left|e^{-\lambda_{q} \Delta T}-\beta_{q}\right|=\left|e^{1-1 / \beta_{q}}-\beta_{q}\right| \tag{18}
\end{equation*}
$$

which yields:

$$
\rho_{n}^{q} \leq\left|e^{1-1 / \beta_{q}}-\beta_{q}\right|^{n}\left\|\mathcal{T}^{n}\left(\beta_{q}\right)\right\|_{L^{\infty}} \leq \sup _{0<\beta<1}\left|e^{1-1 / \beta}-\beta\right|^{n}\left\|\mathcal{T}^{n}(\beta)\right\|_{L^{\infty}}
$$

By considering $\left\|\mathcal{T}^{n}(\beta)\right\|_{\infty} \leq\|\mathcal{T}(\beta)\|_{\infty}^{n}=\left|\frac{1-\beta^{\hat{k}-1}}{1-\beta}\right|^{n}$, a simpler upper bound for ρ_{n} can be obtained:

$$
\sup _{0<\beta<1}\left|e^{1-1 / \beta}-\beta\right|^{n}\left|\frac{1-\beta^{\hat{k}-1}}{1-\beta}\right|^{n} \leq\left(\sup _{0<\beta<1} \frac{e^{1-1 / \beta}-\beta}{1-\beta}\right)^{n} \approx 0.2984^{n}
$$

and the maximum is attained around $\beta_{*}=0.358$, independently of n and $\hat{k}\left(\beta_{*}\right.$ presents slight variation for $1 \leq n$ and $6 \leq \hat{k}$, cases of practical interest).

4 Numerical Experiments

The optimal control problem we consider involves the 1D-heat equation:

$$
z_{t}-z_{x x}=v, \quad 0<x<1, \quad 0<t<1
$$

with boundary conditions $z(t, 0)=z(t, 1)=0$ for $t \in[0,1]$, and initial data $z(0, x)=$ 0 for $x \in[0,1]$. The control variable $v(\cdot)$ corresponds to the forcing term, and the target function is the nodewise interpolation of the function $\hat{y}(t, x)=x(1-x) e^{-x}$. We choose a tolerance $t o l \leq 10^{-6}$ for the left preconditioned MINRES.

Table 1 lists the value of $\left(\gamma_{\max }-1\right)$ for different values of τ and n. The results confirm Remark 1. Table 2 lists the number of MINRES iterations as ΔT and τ vary while $(\Delta T / \tau)$ remains constant. Choosing $n=2,4,7$ iterations for the Parareal, the number of iterations for the MINRES basically remains constant when h or τ are refined, and so the results indicate scalability. Table 3 lists the number of MINRES iterations for $n=2$ and $\tau=(1 / 512)$ for different values of $(\Delta T / \tau)$. It indicates also scalability with respect to ΔT. Like in [4], we observe numerically that the number of MINRES iterations grows logarithmically with respect to $1 / r$.

Table 1. Values of $\gamma_{\max }-1$ when τ is refined. Parameters $h=1 / 10$ and $\Delta T=1 / 20$.

$n \backslash \hat{l}$	200	400	800	1600
$n=1$	0.864415	1.449299	2.473734	4.371709
$n=2$	0.070835	0.097852	0.136802	0.193845
$n=3$	0.007760	0.010765	0.015141	0.021165
$n=4$	0.000865	0.001224	0.001715	0.002397

Table 2. MINRES iterations using a parareal with $n=2 / 4 / 7$ as preconditioners. Parameters $r=0.0001$ and $\Delta T / \tau=16$.

\hat{k}	4	8	16	32
\hat{l}	64	128	256	512
$h=1 / 16$	$62 / 40 / 42$	$58 / 44 / 44$	$60 / 50 / 44$	$60 / 50 / 44$
$h=1 / 32$	$60 / 42 / 42$	$58 / 44 / 44$	$60 / 50 / 44$	$62 / 50 / 44$
$h=1 / 64$	$60 / 42 / 42$	$58 / 44 / 44$	$60 / 50 / 44$	$62 / 50 / 44$

References

[1] M. J. Gander and S. Vandewalle. On the super linear and linear convergence of the parareal algorithm. In Domain Decomposition Methods in Science and

Table 3. MINRES iterations using the Parareal algorithm with $n=2$ as preconditioner. Parameters $r=0.001 / 0.0001 / 0.00001$ and $\tau=1 / 512$.

\hat{k}	8	16	32	64
$\Delta T / \tau$	64	32	16	8
$h=1 / 16$	$32 / 62 / 136$	$32 / 62 / 136$	$32 / 60 / 132$	$32 / 60 / 132$
$h=1 / 32$	$32 / 62 / 136$	$32 / 62 / 136$	$32 / 62 / 132$	$32 / 60 / 132$
$h=1 / 64$	$32 / 62 / 136$	$32 / 62 / 136$	$32 / 62 / 132$	$32 / 60 / 132$

Engineering XVI, volume 55 of Lect. Notes Comput. Sci. Engrg., pages 291-298. Springer, Berlin, 2007.
[2] J. L. Lions. Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin-Heidelberg-New York, 1971.
[3] J. L. Lions, Y. Maday, and G. Turinici. Résolution d'EDP par un schéma en temps pararéel. C. R. Acad. Sci. Paris Sér. I Math., 332(7):661-668, 2001.
[4] T. P. Mathew, M. Sarkis, and C. E. Schaerer. Block iterative algorithms for the solution of parabolic optimal control problems. In M. Daydé et al., editor, High Performance Computing for Computational Science - VECPAR 2006, pages 452-465. Springer, Lect. Notes Comput. Sci., 4395, 2007.
[5] C. C. Paige and M. A. Saunders. Solutions of sparse indefinite systems of linear equations. SIAM J. Numer. Anal., 12(4):617-629, 1975.

