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Summary. We consider an elliptic optimal control problem in two dimensions, in
which the control variable corresponds to the Neumann data on a boundary segment,
and where the performance functional is regularized to ensure that the problem is well
posed. A finite element discretization of this control problem yields a saddle point
linear system, which can be reduced to a symmetric positive definite Hessian system
for determining the control variables. We formulate a robust preconditioner for this
reduced Hessian system, as a matrix product involving the discrete Neumann to
Dirichlet map and a mass matrix, and show that it yields a condition number bound
which is uniform with respect to the mesh size and regularization parameters. On
a uniform grid, this preconditioner can be implemented using a fast sine transform.
Numerical tests verify the theoretical bounds.

1 Introduction

Elliptic control problems arise in various engineering applications [4]. We consider a
problem in which the “control” variable u(.) corresponds to the Neumann data on
a boundary segment, and it must be chosen so that the solution y(.) to the ellip-
tic equation with Neumann data u(.) closely matches a specified “target” function
ŷ(.). To determine the “optimal” control, we employ a performance functional which
measures a square norm error between ŷ(.) and the actual solution y(.), and the con-
trol variable is sought so that it minimizes the performance functional [1, 3, 5, 4].
However, this results in an ill-posed constrained minimization problem, which can be
regularized by adding a small Tikhonov regularization term to the performance func-
tional. We discretize the regularized optimal control problem using a finite element
method, and this yields a saddle point system [1, 2, 7].

In this paper, we formulate a robust preconditioner for the symmetric positive
definite Hessian system for the control variables, obtained by block elimination of the
saddle point system. In § 2, we formulate the elliptic optimal control problem and its
discretization. In § 3, we derive the Hessian system and formulate our preconditioner
as a symmetric matrix product involving the discrete Neumann to Dirichlet map and
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a mass matrix. We show that it yields a condition number bound that is independent
of the mesh size and the regularization parameters. On a uniform grid, we describe
a fast sine transform (FST) implementation of it. Numerical results are presented
in § 4.

2 Optimal Control Problem

Let Ω ⊂ R2 be a polygonal domain and let Γ be an edge of its boundary ∂Ω. We
consider the problem of determining a Neumann control data u(·) on Γ such that
the solution y(·) to the following problem with forcing term f(·):





−∆y(x) = f(x), in Ω
∂y(x)
∂n

= u(x), on Γ

y(x) = 0, on ∂Ω\Γ
(1)

minimizes the following performance functional J(y, u):

J(y, u) ≡ 1

2

(
‖y − ŷ‖2L2(Ω) + α1 ‖u‖2L2(Γ ) + α2 ‖u‖2H−1/2(Γ )

)
, (2)

where ŷ(·) ∈ L2(Ω) is a given target, and α1, α2 ≥ 0 denote regularization param-
eters. Later in the paper we also consider the case where ‖y − ŷ‖L2(Ω) in (2) is
replaced by ‖y − ŷ‖L2(Γ ). The term ‖u‖H−1/2(Γ ) denotes the dual Sobolev norm

associated with H
1/2
00 (Γ ). We let H1

D(Ω) denote the subspace of H1(Ω) consisting
of functions vanishing on D ≡ (∂Ω \ Γ ).

To obtain a weak formulation of the minimization of (2) within set (1), we employ
the function space H1

D(Ω) for y(·) and H−1/2(Γ ) for u(·). Given f ∈ L2(Ω), define
the constraint set Vf ⊂ V ≡ H1

D(Ω)×H−1/2(Γ ):

Vf ≡
{

(y, u) ∈ V : A(y, w) = (f, w) + < u,w >, ∀w ∈ H1
D(Ω)

}
, (3)

where the forms are defined by:





A(y, w) ≡
∫
Ω
∇y · ∇w dx, for y, w ∈ H1

D(Ω)

(f, w) ≡
∫
Ω
f(x)w(x) dx, for w ∈ H1

D(Ω)

< u,w > ≡
∫
Γ
u(x)w(x) dsx, for u ∈ H−1/2(Γ ), w ∈ H1/2

00 (Γ ).

(4)

The constrained minimization problem then seeks (y∗, u∗) ∈ Vf satisfying:

J(y∗, u∗) = min J(y, u).

(y, u) ∈ Vf
(5)

To obtain a saddle point formulation of (5), introduce p(·) ∈ H1
D(Ω) as a La-

grange multiplier function to enforce the constraints. Define the following Lagrangian
functional L(·, ·, ·):

L(y, u, p) ≡ J(y, u) + (A(y, p)− (f, p) − < u, p >) , (6)
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for (y, u, p) ∈ H1
D(Ω) × H−1/2(Γ ) × H1

D(Ω). Then, the constrained minimum
(y∗, u∗) of J(., .) can be obtained from the saddle point (y∗, u∗, p∗) of L(·, ·, ·), where
(y∗, u∗, p∗) ∈ H1

D(Ω)×H−1/2(Γ )×H1
D(Ω) satisfies:

sup
q
L(y∗, u∗, q) = L(y∗, u∗, p∗) = inf

(y,u)
L(y, u, p∗). (7)

For a discussion on the well-posedness of problem (7), see [5, 4].
To obtain a finite element discretization of (5), choose a quasi-uniform triangula-

tion τh(Ω) of Ω. Let Vh(Ω) ⊂ H1
D(Ω) denote the P1-conforming finite element space

associated with the triangulation τh(Ω), and let Vh(Γ ) ⊂ L2(Γ ) denote its restric-
tion to Γ . A finite element discretization of (5) will seek (y∗h, u

∗
h) ∈ Vh(Ω) × Vh(Γ )

such that:
J(y∗h, u

∗
h) = min J(yh, uh)

(yh, uh) ∈ Vh,f
(8)

where the discrete constraint space Vh,f ⊂ Vh ≡ Vh(Ω)× Vh(Γ ) is defined by:

Vh,f = {(yh, uh) ∈ Vh : A(yh, wh) = (f, wh) + < uh, wh >, ∀wh ∈ Vh(Ω)} .

Let ph ∈ Vh(Ω) denote discrete Lagrange multiplier variables, and let {φ1(x), . . . ,
φn(x)} and {ψ1(x), . . . , ψm(x)} denote the standard nodal basis functions for Vh(Ω)
and Vh(Γ ), respectively. Expanding yh, uh and ph with respect to its finite element
basis, yields:

yh(x) =

n∑

i=1

yi φi(x), uh(x) =

m∑

j=1

ui ψi(x), ph(x) =

n∑

l=1

pl φl(x), (9)

and seeking the discrete saddle point of L(·, ·, ·), yields the linear system:



MΩ 0 AT

0 G BT

A B 0







y

u

p


 =




f1

f2

f3


 , (10)

where the sub-matrices MΩ , A and Q (to be used later), are defined by:





(MΩ)ij ≡
∫
Ω
φi(x)φj(x) dx, for 1 ≤ i , j ≤ n

(A)ij ≡
∫
Ω
∇φi(x) · ∇φj(x) dx, for 1 ≤ i , j ≤ n

(Q)ij ≡
∫
Γ
ψi(x)ψj(x) dsx, for 1 ≤ i , j ≤ m,

(11)

and the forcing vectors are defined by (f1)i =
∫
Ω
ŷ(x)φi(x) dx, for 1 ≤ i ≤ n with

f2 = 0, and (f3)i =
∫
Ω
f(x)φi(x) dx for 1 ≤ i ≤ n. Matrix MΩ of dimension n

corresponds to a mass matrix on Ω, and matrix A to the stiffness matrix. Matrix
Q of dimension m corresponds to a lower dimensional mass matrix on Γ . Matrix B
will be defined in terms of Q, based on an ordering of nodal unknowns in y and p
with nodes in the interior of Ω ordered prior to the nodes on Γ . Denote such block

partitioned vectors as y =
(
yTI ,y

T
B

)T
and p =

(
pTI ,p

T
B

)T
, and define B of dimension

n × m as BT =
[

0 QT
]
, and define matrix G of dimension m, representing the

regularizing terms as:

G ≡ α1Q+ α2

(
BTA−1B

)
. (12)
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3 Preconditioned Hessian System

The algorithm we shall consider for solving (10) will be based on the solution of
the following Hessian system for the discrete control u. It is the Schur complement
system obtained by block elimination of y and p in system (10):

(
G+BTA−TMΩA

−1B
)
u = f2 −BTA−T f1 +BTA−TMΩA

−1f3. (13)

The Hessian matrix H ≡
(
G+BTA−TMΩA

−1B
)

is symmetric and positive def-
inite of dimension m, and system (13) can be solved using a PCG algorithm.
Each matrix vector product with G + BTA−TMΩA

−1B will require the action
of A−1 twice per iteration (this can be computed iteratively, resulting in a dou-
ble iteration). Once u has been determined, we obtain y = A−1 (f3 −Bu) and
p = A−T

(
f1 −MΩA

−1f3 +MΩA
−1Bu

)
.

The task of finding an effective preconditioner for the Hessian matrix H is com-
plicated by the presence of the parameters α1 ≥ 0 and α2 ≥ 0. As noted in [5], when
α1 or α2 is large (or equivalently, when λmin(G) is sufficiently large), then G is spec-
trally equivalent to H and therefore G will be an effective preconditioner for H, while
when both α1 and α2 are small (or equivalently, when λmax(G) is sufficiently small),
then the matrix (BTA−TMΩA

−1B) will be an effective preconditioner for H. For
intermediate values of αi, however, neither limiting approximation may be effective.
In the special case when we replace ‖y− ŷ‖L2(Ω) in (2) by ‖y− ŷ‖L2(Γ ), then matrix
MΩ is replaced by MΓ ≡ blockdiag(0, Q) and we shall indicate a preconditioner for
H, uniformly effective with respect to α1 > 0 or α2 > 0.

The preconditioner we shall formulate for H will be based on spectrally equiv-
alent representations of G and (BTA−TMA−1B), for special choices of the matrix
M . Lemma 1 below describes uniform spectral equivalences between G, (BTA−1B),
(BTA−TMΩA

−1B) and one or more of the matrices Q and S−1, where S =(
AΓΓ −ATIΓA−1

II AIΓ
)

denotes the discrete Dirichlet to Neumann map. Properties
of S have been studied extensively in the domain decomposition literature [8].

Lemma 1. Let Ω ⊂ R2 be a convex domain. Then, the following equivalences:

(BTA−1B) = QS−1Q

(BTA−TMA−1B) = QS−1QS−1Q when M = MΓ

(BTA−TMA−1B) ≍ QS−1QS−1QS−1Q when M = MΩ ,

(14)

will hold with constants independent of h, where S = (AΓΓ − ATIΓA−1
II AIΓ ), MΓ =

blockdiag(0, Q) and MΩ is the mass matrix on Ω.

Proof. The first statement is a trivial calculation. To prove the second, use:

A−1 =

[
A−1
II +A−1

II AIΓS
−1ATIΓA

−1
II −A−1

II AIΓS
−1

−S−1ATIΓA
−1
II S−1

]
.

Employing this and using the block matrix structure of B yields:

A−1Bu =

[
−A−1

II AIΓS
−1Qu

S−1Qu

]
.
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Substituting this expression yields that BTA−TMΓA
−1B = QS−1QS−1Q . To prove

the third equivalence, let uh denote a finite element control function defined on Γ
with associated nodal vector u. Let vh denote the Dirichlet data associated with the
Neumann data uh, i.e. with associated nodal vector v = S−1Qu. When M = MΩ ,
then uT (BTA−TMA−1B)u will be equivalent to ‖Evh‖2L2(Ω), where Evh denotes
the discrete harmonic extension of the Dirichlet boundary data vh into Ω with
associated nodal vector A−1Bu. When Ω is convex, H2(Ω) elliptic regularity will
hold for (1) and a result from [6] shows that ‖Evh‖2L2(Ω) is spectrally equivalent

to ‖vh‖2H−1/2(Γ )
. In matrix terms, the nodal vector associated with the discrete

Dirichlet data vh will be v = S−1Qu, given by the discrete Neumann to Dirichlet
map. For vh ∈ H−1/2(Γ ), it will hold that ‖vh‖2H−1/2(Γ )

is spectrally equivalent to

vTQTS−1Qv, and in turn equivalent to uTQTS−1QTS−1QS−1Qu and the third
equivalence follows, since QT = Q and S−T = S−1.

As a consequence, we obtain the following uniform spectral equivalences.

Lemma 2. Let Ω ⊂ R2 be a convex domain. Then, the following equivalences will
hold for the Hessian matrix H ≡

(
G+BTA−TMA−1B

)
:

H = H0 ≡ α1Q+ α2QS
−1Q+QS−1QS−1Q, when M = MΓ

H ≍ H0 ≡ α1Q+ α2QS
−1Q+QS−1QS−1QS−1Q, when M = MΩ ,

(15)

with constants independent of h, α1 and α2.

H0 will be our model preconditioner for H. To obtain an efficient solver for H0, in
applications we shall replace Q and S by Q0 ≍ Q and S0 ≍ S. However, since a
product of matrices is involved, caution must be exercised in the choice of Q0 and
S0. Bounds independent of h and αi will be retained only under additional regularity
assumptions or the commutativity of Q, S, Q0 and S0.

3.1 An FST Based Preconditioner H̃ ≍ H0 for H

If Ω ⊂ R2 is rectangular and the grid is uniform, and Γ is one of the four edges
forming ∂Ω, then the Dirichlet to Neumann map S (hence S−1) and the mass matrix
Q will be diagonalized by the discrete Sine Transform F , where:

(F )ij =

√
2

m+ 1
sin(

i j π

m+ 1
) for 1 ≤ i, j ≤ m,

see [8]. Regularity theory shows that the Dirichlet to Neumann map S satis-

fies S ≍ S0 ≡ Q1/2
(
Q−1/2LQ−1/2

)1/2

Q1/2 ≍ ‖ · ‖2
H

1/2
00 (Γ )

, where L denotes

a discretization of the Laplace-Beltrami operator LB = − d2

ds2x
on Γ with homo-

geneous Dirichlet conditions, see [8]. For a uniform grid, the Laplace-Beltrami
matrix is L = h−1 tridiag(−1, 2,−1), and it is diagonalized by the sine trans-
form F with L = FΛLF

T , where the diagonal matrix ΛL has entries ΛL(ii) =
4 (m + 1) sin2( i π

2 (m+1)
). For a uniform grid, the mass matrix satisfies Q = Q0 ≡

h
6

tridiag(1, 4, 1) and it is also diagonalized by F , satisfying Q0 = FΛQ0F
T for

ΛQ0(ii) = 1
3 (m+1)

(3− 2 sin2( i π
2 (m+1)

)). Thus, we obtain:
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S ≍ S0 ≡ FΛS0F
T = F

(
Λ

1/4
Q0
Λ

1/2
L Λ

1/4
Q0

)
FT

Q = Q0 = FΛQ0F
T .

Since matrices S, Q, S0 and Q0 are diagonalized by F on a uniform grid, these
matrices commute. As a result, it can be verified that H̃ ≍ H0 ≍ H:

H̃ ≍ F
(
α1 ΛQ0 + α2 Λ

2
Q0
Λ−1
S + Λ3

Q0
Λ−2
S

)
FT , when M = MΓ

H̃ ≍ F
(
α1 ΛQ0 + α2 Λ

2
Q0
Λ−1
S + Λ4

Q0
Λ−3
S

)
FT , when M = MΩ ,

(16)

with bounds independent of h and αi. The eigenvalues of H̃−1 can be found analyt-
ically, and the action of H̃−1 can be computed at low cost using FST’s.

4 Numerical Experiments

We present numerical tests of control problem (2) on the two-dimensional unit
square (0, 1) × (0, 1). Neumann conditions are imposed on Γ = (0, 1) × {0}, and
homogeneous Dirichlet conditions are imposed on the remaining sides of ∂Ω, with
forcing term f(x, y) = 0 in Ω. We consider a structured triangulation on Ω with
mesh parameter h = 2−N , where N is an integer denoting the number of refinements.
We test different values for the relaxation parameters α1 and α2, for the mesh size
h, and for mass matrix M . In all numerical experiments, we run PCG until the
preconditioned l2 initial residual is reduced by a factor of 10−9. We use the FST
based preconditioner described in (16).

Table 1. Number of PCG iterations and (condition) for α2 = 0 and M = MΩ .

N \ α1 1 (0.1)2 (0.1)4 (0.1)6 0

3 3 (1.02) 5 (1.65) 7 (1.60) 6 (1.44) 7 (1.54)
4 3 (1.02) 5 (1.63) 9 (1.95) 6 (1.29) 7 (1.56)
5 3 (1.02) 5 (1.63) 8 (2.00) 7 (1.50) 7 (1.56)
6 3 (1.02) 5 (1.64) 8 (2.01) 6 (1.86) 6 (1.55)
7 3 (1.02) 5 (1.64) 8 (2.00) 6 (1.96) 5 (1.51)

Tables 1 and 2 list results on runs with M = MΩ and target function ŷ(x, y) = 1
on [1/4, 3/4] × [0, 3/4] and equal to zero otherwise. We list the number of PCG
iterations and in parenthesis the condition number estimate for the preconditioned
system. As expected from the analysis, the number of iterations and the condition
number remain bounded, and when no preconditioning is used, the problem becomes
very ill-conditioned for small regularization αi; see Table 3. In Tables 4 and 5 we
report the results for M = MΓ with target function ŷ(x, 0) = 1 on [1/4, 3/4]× {0},
and equal to zero otherwise. As before, the number of iterations and the condition
number remain bounded.
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Table 2. Number of PCG iterations and (condition) for α1 = 0 and M = MΩ .

N \ α2 1 (0.1)2 (0.1)4 (0.1)6 0

3 7 (2.15) 6 (1.45) 7 (1.50) 7 (1.53) 7 (1.54)
4 8 (2.26) 7 (1.71) 7 (1.45) 7 (1.56) 7 (1.56)
5 7 (2.24) 7 (1.84) 6 (1.32) 7 (1.56) 7 (1.56)
6 5 (2.03) 7 (1.95) 5 (1.33) 6 (1.52) 6 (1.55)
7 4 (1.82) 6 (1.76) 5 (1.40) 5 (1.44) 5 (1.51)

Table 3. Number of CG iterations and (condition) for α2 = 0 and M = MΩ .

N \ α1 1 (0.1)2 (0.1)4 (0.1)6 0

3 7 (2.75) 7 (6.80) 8 (351) 8 (2.2+3) 8 (2.3+3)
4 9 (2.97) 9 (7.47) 15 (448) 23 (1.6+4) 23 (2.4+4)
5 7 (3.03) 8 (7.64) 16 (468) 35 (3.8+4) 53 (2.0+5)
6 6 (3.04) 6 (7.69) 12 (472) 39 (4.6+4) 106 (1.6+6)
7 4 (3.05) 5 (7.70) 11 (473) 34 (4.7+4) 162 (1.3+7)

Table 4. Number of PCG iterations and (condition) for α2 = 0 and M = MΓ .

N \ α1 1 (0.1)2 (0.1)4 (0.1)6 0

3 3 (1.01) 4 (1.17) 4 (3.96) 4 (5.08) 4 (5.09)
4 2 (1.00) 4 (1.07) 7 (2.73) 8 (5.64) 8 (5.72)
5 2 (1.00) 3 (1.02) 7 (1.76) 11 (5.44) 11 (5.75)
6 2 (1.00) 3 (1.00) 5 (1.29) 12 (4.69) 13 (5.78)
7 2 (1.00) 3 (1.01) 4 (1.10) 8 (3.14) 10 (5.65)

Table 5. Number of PCG iterations and (condition) for α1 = 0 and M = MΓ .

N \ α2 1 (0.1)2 (0.1)4 (0.1)6 0

3 4 (2.29) 4 (3.99) 4 (5.08) 4 (5.09) 4 (5.09)
4 8 (2.41) 8 (3.81) 8 (5.68) 8 (5.72) 8 (5.72)
5 8 (2.37) 9 (3.25) 11 (5.66) 11 (5.75) 11 (5.75)
6 7 (2.33) 8 (2.84) 12 (5.57) 13 (5.78) 13 (5.78)
7 5 (2.09) 6 (2.45) 9 (5.24) 10 (5.64) 10 (5.65)

5 Conclusions

We have introduced a robust preconditioner for the Hessian matrix in a class of ellip-
tic optimal control problems. We have shown that the Hessian matrix is spectrally
equivalent to a composition of the discrete Laplace-Beltrami and mass matrices.
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For a uniform grid, these matrices are simultaneously diagonalized by a fast sine
transform. The resulting preconditioner is optimal with respect to the mesh size
and relaxation parameters. Numerical results confirm the robustness of the precon-
ditioner.
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