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Summary. We present an optimized Schwarz waveform relaxation algorithm for
the parallel solution in space-time of the equations of ferro-magnetics in the micro-
magnetic model. We use Robin transmission conditions, and observe fast conver-
gence of the discretized algorithm. We show numerically the existence of an optimal
parameter in the Robin condition, and study its dependence on the various physical
and numerical parameters.

1 Introduction

Over the last decades, ferro-magnetics has been the subject of renewed in-
terest due to its omnipresence in industrial applications, and the need for
correctly predicting the behavior of ferro-magnets, which is best achieved by
numerical simulations, see the historical introduction in [11] and [1]. Since
micro-magnetic simulations are very costly, we present in this paper an opti-
mized Schwarz waveform relaxation algorithm for the micro-magnetic equa-
tion. These algorithms have the advantage of independent adaptive discretiza-
tions per subdomain both in space and time, and they are naturally parallel,
see [6, 7, 4, 5]. We present a numerical analysis of the algorithm with Robin
transmission conditions applied to the equation of ferro-magnetics for a two
subdomain decomposition, and study the dependence of the optimal param-
eter on the various physical and numerical parameters.

2 The Micro-Magnetic Model

Let Ω be a bounded open set in R3 filled with a ferromagnetic material. The
magnetic state of the material is given by its magnetization vector m ∈ R3,
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vanishing outside Ω, with the non-convexity constraint

|m| = 1 a.e. in Ω. (1)

The behavior of m is modeled by the Landau-Lifschitz equation,

∂m

∂t
= L(m) := −m × h(m) − αm × (m × h(m)), (2)

where α > 0 is the dissipation parameter. As a first step toward real computa-
tions, we include only the exchange interaction, which is local, and produces
a magnetic excitation h(m) = A△m, where A > 0 is the exchange constant.
The equation in Ω × (0, T ) is subject to homogeneous Neumann boundary
conditions on the boundary of Ω, i.e. ∂m

∂ν = 0, where ν is the unit outward
normal on the boundary. Equation (2) is often used to compute the steady
states of the magnetization field; for more information, see [8].

3 Optimized Schwarz Waveform Relaxation Algorithm

We decompose the domain Ω into p non-overlapping subdomains (Ω̃i)i=1...p,⋃p
i=1 Ω̃i = Ω. We then derive from this non-overlapping decomposition an

overlapping one by choosing (Ωi)i=1...p such that Ω̃i ⊂ Ωi and
⋃p

i=1Ωi = Ω.
We define the interfaces and exterior boundary by

Γij = ∂Ωi ∩ Ω̃j , Γ e
i = ∂Ωi ∩ ∂Ω.

An optimized Schwarz waveform relaxation algorithm computes for n =
1, 2, . . . the iterates (mn

i )1≤i≤p defined by

∂mn
i

∂t
= L(mn

1 ) in Ωi × (0, T ),

mn
i (·, 0) = m0 on Ωi,

Bijm
n
i = Bijm

n−1
j on Γij × (0, T ),

∂mn
i

∂ν
= 0 on Γ e

i × (0, T ),

(3)

where the Bij are linear operators.
In [2, 5], several strategies for choosing these boundary operators are pro-

posed both in the case with and without overlap, and a complete convergence
analysis is provided for a linear advection-diffusion equation. Here, because
of the non-linearity, such an analysis is not yet available, and we use for our
numerical study for the non-overlapping case Robin transmission conditions,
which are robust and easy to implement, i.e. Bij = ∂

∂ν
+ βijI, where βij is a

positive real number to be chosen optimally for best convergence.
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4 Discretization

We use in space a finite difference discretization on a regular rectangular grid,
where the Laplace operator can be approximated by the standard five point
finite difference stencil. Since we use cell-centered nodes, the boundaries and
the interfaces are halfway in between two nodes, and hence values there can
be approximated using the mean of the two adjacent nodes, denoted by A
and B in Figure 1, whereas the normal derivative can be approximated by a
finite difference between the same nodes A and B.

Γ

b

b

b

b

bA B×X

Fig. 1. Position of the interface in our cell-centered finite difference discretization.

The Robin condition ∂νm + βm = g at point X in Figure 1 is thus
discretized by mB−mA

∆x + βmA+mB

2 = g, where ∆x is the space step-size.
This yields mB = (2∆xg + (2 − β∆x)mA)/(2 + β∆x), which is then used to
complete the missing value at the node B in the five-point finite difference
stencil centered at A in Figure 1.

For the time discretization, we use the explicit second order scheme from
[9, 10],

mi+1 = mi +∆tF (mi) +
∆t2

2
DF (mi) · F (mi), (4)

where D is the differentiation operator and

F (mi) = −mi × h(mi) − αmi × (mi × h(mi)).

To satisfy the non-convexity constraint (1), we renormalize the magnetization
after each time step. Our implementation can use an optimized time step per
subdomain in order to maximize energy dissipation and speed up convergence
to the steady state, and thus the algorithm is truly non-conforming in time. To
study however the convergence to the discrete solution on the entire domain
Ω numerically, we use in the sequel fixed time steps in the subdomains.
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5 Numerical Study of the Algorithm

We consider a squared ferromagnetic thin plate of dimension 3.68e−6 ×
3.68e−6 × ∆x, with the parameter A = 4.06e−18. We also fix the param-
eter α to be 1

2 .
We divide the domain into two subdomains, as shown in Figure 2. In this

non-overlapping case, Γ12 = Γ21 = Γ , and we consider the case β12 = β21 = β
only. We discretize the problem as shown in Section 4, and we first compute

Γ Ω1Ω2

Fig. 2. The two subdomain decomposition used for our numerical experiments.

the discrete solution on the entire domain. We then measure the relative
error between the mono-domain solution and each iteration of the optimized
Schwarz waveform relaxation algorithm in the l2h norm,

‖u‖2
l2h

=

N∑

i=1

|ωi‖|ui|2.

Since (ωi) is a rectangular mesh, |ωi| = |∆x|3.
We mesh the ferromagnetic domain with a space step of ∆x = 1.84e−7,

which yields a 20×20×1 mesh. A numerical experiment over long time shows
that for the physical parameters chosen above, the equilibrium state has not
yet been reached at T = 30000.

We first study the convergence behavior of the optimized Schwarz wave-
form relaxation algorithm. The simulations presented here are done without
overlap. We choose a final time of T = 500, and perform a series of compu-
tations for fixed ∆t, for various values of the parameter β. In Figure 3, we
show for the time discretization steps ∆t = 0.125 and ∆t = 5 the relative
error curves for a sequence of iterates as a function of the parameter β in
the Robin transmission condition. The algorithm is convergent, and there is
a numerically optimal choice βopt for β: in both cases, βopt ≈ 1.05e+7, which
indicates that βopt does not depend on the time step.

We now study the dependence of βopt on the space discretization step ∆x.
As the step size increases, βopt in the Robin transmission conditions decreases.
The least squared best fit shown in Figure 4 gives lnβopt ≈ 1.03−0.97 ln(∆x),
which indicates that
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Fig. 3. Convergence curves as function of the optimization parameter β for two
different time steps.

βopt ≈
2.8

∆x
. (5)
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Fig. 4. βopt as a function of the space discretization step

In the next sequence of numerical experiments, we study the dependence
of βopt on the physical parameters of the problem. In Figure 5, we show for
the final times T = 100 and T = 4000 the relative error curves for a sequence
of iterations as a function of the parameter β in the Robin transmission con-
dition. These results, and a large sample of final times between 1 and 4000
indicate that βopt does not seem to depend on the final time. This is somewhat
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Fig. 5. Convergence curves as function of the optimization parameter for two final
times.

unexpected, since for the linear heat equation, βopt depends on the final time,
see [3].

The fact that βopt does not depend on the final time of the simulation
implies that βopt does not depend on the physical parameter A in our case,
since dividing the entire equation by A shows that A can be interpreted as a
scaling factor for the final time. If however other exchange interactions were
present, such as the demagnetization field, this scaling argument would not
hold any more.

It remains to study the behavior of βopt when α varies. To this end, we
compute the convergence curves with parameters T = 200 and ∆x = 1.84e−7
for α ranging from 0.1 to 100. We present some of these results in Figure 6. For
small α, the algorithm converges very well and the βopt has an approximate
value of 1.05e+7. However as α increases, the value of βopt varies as shown in
Figure 7 and the optimal error increases, see Figure 7.

6 Conclusion

We presented an optimized Schwarz waveform relaxation algorithm for the
equations of ferro-magnetics in the micro-magnetic model. We studied nu-
merically the convergence behavior of the algorithm with Robin transmission
conditions. This study revealed that the algorithm converges very fast: after
only few iterations, an error reduction by a factor of 10−9 is achieved. Using
extensive numerical results, we determined a heuristic formula for the value
of βopt, in the non-overlapping case,

βopt ≈
g(α)

∆x
,

where g(α) is represented in Figure 7 on the left.
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Fig. 6. Convergence curves for various choice of α
.
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Fig. 7. βopt and optimal error as functions of α

We are currently working on a convergence analysis of the algorithm, and
the extension to other interaction terms; in particular adding the demagneti-
zation field interaction is challenging, since it represents a global operator.
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