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Summary. In this paper we demonstrate that the Smith factorization is a powerful
tool to derive new domain decomposition methods for vector valued problems. Here,
the factorization is applied to the two-dimensional Stokes system. The key idea is the
transformation of the Stokes problem into a scalar bi-harmonic problem. We show
how a proposed domain decomposition method for the bi-harmonic problem leads
to an algorithm for the Stokes equations which inherits the convergence behavior of
the scalar problem.

1 Introduction

The last decade has shown that Neumann-Neumann type algorithms, FETI, and
BDDC methods are very efficient domain decomposition methods for scalar sym-
metric positive definite second order problems. Then, these methods have been ex-
tended to other problems, like advection-diffusion equations, plate or shell problems.
Also for the Stokes equations several iterative substructuring methods have been dis-
cussed in the literature, like Neumann-Neumann precondtioners (cf. [6, 2]), FETI
(cf. [3]) or BDDC methods (cf. [4]).

Our work is motivated by the fact that many domain decomposition methods
for vector valued problems are less optimal than domain decomposition methods
for scalar problems. Indeed, in the case of two subdomains consisting of the two
half planes it is well known that Neumann-Neumann preconditioners are exact (the
preconditioned operator simplifies to the identity) preconditioners for the Schur com-
plement equation for scalar equations like the Laplace problem. Unfortunately, this
is not valid for the Stokes problem as we have shown in [5] for standard Neumann-
Neumann preconditioners. The goal of this paper is the derivation of an algorithm
which preserves this property, cf. [1] for detailed proofs.

Using the Smith factorization we show the equivalence between the Stokes equa-
tions and a bi-harmonic problem in Section 2. The Smith factorization is a classical
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algebraic tool for matrices with polynomial entries. Then, in Section 3 we introduce
an exact domain decomposition method for the bi-harmonic equation and transform
it to the Stokes equations. Section 4 is dedicated to numerical results. Finally, we
give some concluding remarks.

2 Equivalence Between the Stokes Equations and
Bi-harmonic Problems

We will show the equivalence between the two-dimensional Stokes system

−ν∆u +∇p+ cu = f , ∇ · u = 0 in Ω

and a fourth order scalar problem (the bi-harmonic problem) by means of the Smith
factorization. This is motivated by the fact that scalar problems are easier to ma-
nipulate and the construction of new algorithms is more intuitive. The approach is
not limited to the two-dimensional case. The three-dimensional case is discussed in
[1].

The data is given by f = (f1, f2)T ∈ [L2(Ω)]2, ν > 0, and c ≥ 0. Very often
c stems from an implicit time discretization and then c is given by the inverse of
the time step size. We denote the two-dimensional Stokes operator by S2(v, q) :=
−ν∆v + cv + ∇q. We recall the Smith factorization of a matrix with polynomial
entries ([7], Theorem 1.4):

Theorem 1. Let A be a n × n matrix with polynomial entries with respect to the
variable λ: A = (aij(λ))1≤i,j≤n. Then, there exist matrices E, D and F with poly-
nomial entries satisfying the following properties:

• det(E) and det(F ) are constants,
• D is a diagonal matrix uniquely determined up to a multiplicative constant,
• A = EDF .

The Smith factorization is applied to the two-dimensional model problem
S2(u, p) = g in R2 with right hand side g = (f1, f2, 0)T where we suppose that
all variables vanish at infinity. Moreover, it is assumed that the coefficients c, ν are
constants. The spatial coordinates are denoted by x and y. In order to apply the
factorization to the Stokes system we first take formally the Fourier transform of
S2(u, p) = g with respect to y. The dual variable is denoted by k. The Fourier
transform of a function f is written as f̂ or Fyf . Thus, we get

Ŝ2(û, p̂) =



−ν(∂xx − k2) + c 0 ∂x

0 −ν(∂xx − k2) + c ik
∂x ik 0





û
v̂
p̂


 . (1)

Considering Ŝ2(û, p̂) as a matrix with polynomial entries with respect to ∂x we
perform for k 6= 0 the Smith factorization. We obtain

Ŝ2 = Ê2D̂2F̂2 (2)

with a diagonal matrix D̂2 = diag(1, 1, (∂xx − k2)L̂2) and
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F̂2 =



νk2 + c νik∂x ∂x

0 L̂2 ik
0 1 0


 , Ê2 = T̂−1

2



ikL̂2 ν∂xxx −ν∂x

0 T̂2 0
ik∂x −∂xx 1




where T2 is a differential operator in y-direction whose symbol is ik(νk2 + c). More-
over, L̂2 := ν(−∂xx + k2) + c is the Fourier transform of L2 := −ν∆+ c.

Remark 1. Thus, the Stokes problem S2(u, p) = g in R2 can be written as

D̂2ŵ = Ê−1
2 ĝ, ŵ := (ŵ1, ŵ2, ŵ3)T := F̂2(û, p̂)T . (3)

From (3) we get ŵ1 = (Ê−1
2 ĝ)1 and ŵ2 = (Ê−1

2 ĝ)2. Noticing that ŵ3 =
(
F̂2(û, p̂)T

)
3

= v̂ the previous equation yields after applying an inverse Fourier transform

∆(−ν∆+ c)v = F−1
y

(
(Ê−1

2 ĝ)3
)
. (4)

Since the determinants of the matrices Ê2 and F̂2 are non-zero numbers (i.e.
a polynomial of order zero) the entries of their inverses are still polynomial in ∂x.
Thus, applying Ê−1

2 to the right hand side ĝ amounts to taking derivatives of ĝ

and making linear combinations of them. If the plane R2 is split into subdomains
R−×R and R+×R the application of Ê−1

2 and F̂−1
2 to a vector can be done for each

subdomain independently. No communication between the subdomains is necessary.
The local problems are only coupled by the biharmonic problem (4). Thus, we can
obtain a domain decomposition method for the Stokes problem by defining a domain
decomposition method for (4) and recasting it to the Stokes problem using the Smith
factorization.

3 A New Algorithm for the Stokes Equations

We construct an algorithm for B := ∆L2 = ∆(−ν∆ + c) on the whole plane di-
vided into two half-planes, which converges in two iterations. Then, via the Smith
factorization, we recast it in a new algorithm for the Stokes system.

We consider the following problem: Find φ : R2 → R such that

B(φ) = g in R
2, |φ(x)| → 0 for |x| → ∞ (5)

where g is a given right hand side. The domain Ω = R2 is decomposed into two half
planes Ω1 = R− × R and Ω2 = R+ × R with interface Γ := {0} × R. Let (ni)i=1,2

be the outward normal of (Ωi)i=1,2. In contrast to the overlapping additive Schwarz
algorithm in [8] we propose an iterative-substructuring algorithm.

ALGORITHM 1 For any initial values φ0
1 and φ0

2 with φ0
1 = φ0

2 and L2φ
0
1 = L2φ

0
2

on Γ we obtain (φn+1
i )i=1,2 from (φni )i=1,2 by the following procedure:

Correction step. We compute the corrections (φ̃n+1
i )i=1,2:





Bφ̃n+1
1 = 0 in Ω1

lim
|x|→∞

|φ̃n+1
1 | = 0

∂φ̃n+1
1

∂n1
= γn1 on Γ

∂L2φ̃
n+1
1

∂n1
= γn2 on Γ





Bφ̃n+1
2 = 0 in Ω2

lim
|x|→∞

|φ̃n+1
2 | = 0

∂φ̃n+1
2

∂n2
= γn1 on Γ

∂L2φ̃
n+1
2

∂n2
= γn2 on Γ

(6)
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where γn1 = −1

2

(
∂φn1
∂n1

+
∂φn2
∂n2

)
and γn2 = −1

2

(
∂L2φ

n
1

∂n1
+
∂L2φ

n
2

∂n2

)
.

Updating step.We update (φn+1
i )i=1,2 by solving the local problems:





Bφn+1
1 = g in Ω1

lim
|x|→∞

|φn+1
1 | = 0

φn+1
1 = φn1 + δn+1

1 on Γ

L2φ
n+1
1 = L2φ

n
1 + δn+1

2 on Γ





Bφn+1
2 = g in Ω2,

lim
|x|→∞

|φn+1
2 | = 0

φn+1
2 = φn2 + δn+1

1 on Γ

L2φ
n+1
2 = L2φ

n
2 + δn+1

2 on Γ

(7)

where δn+1
1 =

1

2
(φ̃n+1

1 + φ̃n+1
2 ) and δn+1

2 =
1

2
(L2φ̃

n+1
1 + L2φ̃

n+1
2 ).

Using the Fourier transform we can prove the following result.

Proposition 1. Algorithm 1 converges in two iterations.

After having found an optimal algorithm which converges in two steps for the
fourth order operator B problem we focus on the Stokes system. It suffices to replace
the operator B by the Stokes system and φ by the last component (F2(u, p)T )3 of
the vector F2(u, p)T in the boundary conditions.

ALGORITHM 2 We choose (u0
1, p

0
1) and (u0

2, p
0
2) such that (F2(u0

1, p
0
1)T )3 =

(F2(u0
2, p

0
2)T )3 and L2(F2(u0

1, p
0
1)T )3 = L2(F2(u0

2, p
0
2)T )3 on Γ .

We compute ((un+1
i , pn+1

i ))i=1,2 from ((uni , p
n
i ))i=1,2 by the following iterative pro-

cedure:
Correction step. We compute the corrections ((ũn+1

i , p̃n+1
i ))i=1,2:





S2(ũn+1
1 , p̃n+1

1 ) = 0 in Ω1

lim
|x|→∞

|ũn+1
1 | = 0

∂(F2(ũn+1
1 , p̃n+1

1 )T )3
∂n1

= γn1 on Γ

∂L2(F2(ũn+1
1 , p̃n+1

1 )T )3
∂n1

= γn2 on Γ





S2(ũn+1
2 , p̃n+1

2 ) = 0 in Ω2

lim
|x|→∞

|ũn+1
2 | = 0

∂(F2(ũn+1
2 , p̃n+1

2 )T )3
∂n2

= γn1 on Γ

∂L2(F2(ũn+1
2 , p̃n+1

2 )T )3
∂n2

= γn2 on Γ

(8)
where

γn1 = −1

2

(
∂(F2(un1 , p

n
1 )T )3

∂n1
+
∂(F2(un2 , p

n
2 )T )3

∂n2

)

γn2 = −1

2

(
∂L2(F2(un1 , p

n
1 )T )3

∂n1
+
∂L2(F2(un2 , p

n
2 )T )3

∂n2

)
.

Updating step. We update ((un+1
i , pn+1

i ))i=1,2 by solving the local problems:





S2(un+1
i , pn+1

i ) = g in Ωi
lim
|x|→∞

|un+1
i | = 0

(F2(un+1
i , pn+1

i )T )3 = (F2(uni , p
n
i )T )3 + δn+1

1 on Γ

L2(F2(un+1
i , pn+1

i )T )3 = L2(F2(uni , p
n
i )T )3 + δn+1

2 on Γ

(9)

where

δn+1
1 =

1

2
[(F2(ũn+1

1 , p̃n+1
1 )T )3 + (F2(ũn+1

2 , p̃n+1
2 )T )3],

δn+1
2 =

1

2
[L2(F2(ũn+1

1 , p̃n+1
1 )T )3 + L2(F2(ũn+1

2 , p̃n+1
2 )T )3].
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This algorithm seems quite complex since it involves third order derivatives of the
unknowns in the boundary conditions on (F2(ũi, p̃i)

T )3. Writing ui = (ui, vi) and
using (F2(ũi, p̃i)

T )3 = ṽi it is possible to simplify it. By using the Stokes equa-
tions in the subdomains we can lower the degree of the derivatives in the boundary
conditions. We further introduce the stress

σ
i(u, p) := ν∂niu − pni

on the boundary ∂Ωi for a velocity u = (u, v), a pressure p and the normal vector
ni. For any vector u its normal (resp. tangential) component on the interface is
uni = u · ni (resp. uτ i = (I − ni ⊗ ni)u). We denote σini

:= σini
(ui, pi) · ni and

σiτ i
:= (I−ni⊗ni)σ

i as the normal and tangential parts of σi, respectively. We can
thus write the new algorithm for the Stokes equations for general decomposition into
non overlapping subdomains: Ω̄ = ∪Ni=1Ω̄i and denote by Γij the interface between
subdomains Ωi and Ωj , i 6= j. The new algorithm for the Stokes system reads:

ALGORITHM 3 Starting with an initial guess ((u0
i , p

0
i ))

N
i=0 satisfying u0

i,τ i
=

u0
j,τ j

and σini
(u0

i , p
0
i ) = σjnj

(u0
j , p

0
j ) on Γij, ∀i, j, i 6= j, the correction step is

expressed as follows for 1 ≤ i ≤ N :




S2(ũn+1
i , p̃n+1

i ) = 0 in Ωi

ũn+1
i,ni

= −1

2
(uni,ni

+ unj,nj
) on Γij

σ
i
τ i

(ũn+1
i , p̃n+1

i ) = −1

2
(σiτ i

(uni , p̃
n
i ) + σ

j
τ j

(unj , p̃
n
j )) on Γij

(10)

followed by an updating step for 1 ≤ i ≤ N :





S2(un+1
i , pn+1

i ) = g in Ωi

u
n+1
i,τ i

= u
n
i,τ i

+
1

2
(ũn+1

i,τ i
+ ũ

n+1
j,τ j

) on Γij

σini
(un+1

i , pn+1
i ) = σini

(uni , p
n
i )

+
1

2
(σini

(ũn+1
i , p̃n+1

i ) + σjnj
(ũn+1

j , p̃n+1
j )) on Γij .

(11)

Since Algorithm 3 is only a reformulation of Algorithm 1 we obtain:

Proposition 2. For a domain Ω = R2 divided into two non overlapping half planes,
Algorithms 2 and 3 are equivalent and converge in two iterations.

In each iteration step of Algorithm 3 two local boundary value problems have to be
solved in each subdomain. Therefore the cost of an iteration step is the same as for
the NN algorithm.

4 Numerical Results

For the discretization of the two-dimensional case we choose a second order centered
Finite Volume approach with a staggered grid. We consider two different types of do-
main decomposition methods: the discrete version of Algorithm 3 and an accelerated
version using the GMRES method.

In the sequel we compare the performance of the new algorithm with the stan-
dard Schur complement approach using a Neumann-Neumann preconditioner (with-
out coarse space), cf. [2]. We consider the domain Ω = [0.2, 1.2]×[0.1, 1.1]. We choose
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ν = 1 and the right hand side f such that the exact solution u = (u, v) is given
by u(x, y) = sin(πx)3 sin(πy)2 cos(πy), v(x, y) = − sin(πx)2 sin(πy)3 cos(πx) and
p(x, y) = x2 + y2.

First, the interface system is solved by a purely iterative method (denoted re-
spectively by itnew and itNN for the new algorithm and the Neumann-Neumann
preconditioner) and then accelerated by GMRES (denoted respectively by acNew
and acNN ). In all tables we count the smallest number of iterations, which is needed
to reduce the euclidian norm of the residual by TOL = 10−8. In brackets the number
of steps is printed, which is needed to achieve an error with respect to one-domain
solution which is less than 10−6. The case that the method is not converged within
100 steps is denoted by −.

We first consider a decomposition into two subdomains of same width and study
the influence of the reaction parameter and of the mesh size on the convergence. We
can see in Table 1 (left) that the convergence of the new algorithm is optimal. For
the iterative version convergence is reached in two iterations. Since in this case the
preconditioned operator for the corresponding Krylov method reduces in theory to
the identity, the Krylov method converges in one step. This is also valid numerically.
Moreover, both algorithm are completely insensitive with respect to the reaction
parameter. The advantage in comparison to the Neumann-Neumann algorithm is
obvious.

In Table 1 (right) we fix the reaction parameter c = 10−5 and vary the mesh size:
Both algorithms converge independently of the mesh size and, again, we observe a
clearly better convergence behavior of the new algorithm. The same kind of results
are valid for different values of c (not presented here).

Table 1. Influence of the reaction parameter on the convergence (h = 1
96

) (left),
influence of the mesh size for c = 10−5 (right).

c itNew itNN acNew acNN
102 2 (2) 16 (15) 1 (1) 6 (6)
100 2 (2) 17 (15) 1 (1) 6 (6)

10−3 2 (2) 17 (15) 1 (1) 6 (6)
10−5 2 (2) 17 (15) 1 (1) 6 (6)

h itNew itNN acNew acNN
1/24 2 (2) 16 (14) 1 (1) 6 (6)
1/48 2 (2) 17 (15) 1 (1) 6 (6)
1/96 2 (2) 17 (15) 1 (1) 6 (6)

Now, the case of a strip-wise decomposition into more than two subdomains
is considered. The mesh size is fixed (h = 1/96) and for different values of c we
vary the number of subdomains. In the case of a strip-wise decomposition into N
subdomains, the iteration number is increasing very quickly for very small c and in
Table 2 (left) we can see only a small advantage of the new algorithm over the more
classical approach. For larger c (Table 2 (right)) the behavior of the two domain
case is conserved. The number of iteration steps is almost reduced by a factor of
two. Moreover, for all cases the convergence is still independent of the mesh size.

The final test cases treat general decompositions into N ×N subdomains. Two
different values for the reaction coefficient c are analyzed. The iterative variants do
not converge in the multi-domain case with cross points within 100 steps (except
one case), cf. Table 3. Applying the accelerated variants we observe in the case 2×2
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Table 2. Influence of the number of subdomains (h = 1
96

): c = 10−5 (left), c = 102

(right).

N itNew itNN acNew acNN
2 2 (2) 17 (15) 1 (1) 6 (6)
4 - (-) - (-) 6 (8) 7 (-)
6 - (-) - (-) 10 (15) 13 (-)
8 - (-) - (-) 13 (21) 19 (-)

N itNew itNN acNew acNN
2 2 (2) 16 (15) 1 (1) 6 (6)
4 45 (34) - (-) 5 (5) 10 (9)
6 - (-) - (-) 8 (7) 15 (15)
8 - (-) - (-) 11 (10) 21 (21)

Table 3. Influence of the number of subdomains (h = 1
96

): c = 1 (left), c = 102

(right).

N ×N itNew itNN acNew acNN
2x2 - (-) - (-) 9 (9) 13 (13)
3x3 - (-) - (-) 27 (30) 26 (28)
4x4 - (-) - (-) 35 (39) 36 (39)

N ×N itNew itNN acNew acNN
2x2 66 (61) - (-) 8 (7) 11 (11)
3x3 - (-) - (-) 21 (22) 21 (21)
4x4 - (-) - (-) 25 (27) 27 (27)

a faster convergence of the new algorithm. For more subdomains both algorithms
need almost the same number of iteration steps. This behavior can be explained
by the presence of floating subdomains, which causes additional problems. Here, a
suitable coarse space will decrease the number of needed iteration steps.

5 Conclusion

We have shown that the Smith factorization is a powerful tool in order to derive new
domain decomposition methods for vector valued partial differential equations. The
proposed algorithm for the Stokes system shows very fast convergence and is robust
with respect to mesh sizes and reaction coefficients. Of course, the convergence is
not satisfactory in the multi-domain case with cross points. But the number of
needed iteration steps can be dramatically decreased by using an appropriate coarse
space. A suitable choice of a coarse space for our new approach is subject of further
research.
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