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Summary. An efficient implementation of the Schwarz method is used to solve the
2D linear system of shallow-water equations (SWEs) on the sphere with an overset
grid system named Yin-Yang. In this paper the convergence of optimized Schwarz
method for solving an elliptic problem is increased by substructuring the algorithm
in terms of interface unknowns. In this work we show, by numerical tests, that
the use of the Yin-Yang grid avoids the “poles problems” resulting from the global
latitude-longitude mesh convergence in the polar regions.

1 Introduction

The Yin-Yang overset grid (see Fig. 1) was suggested in [4] as a quasi-uniform
grid free from the polar singularity. This grid system is constructed by overlapping
two perpendicularly oriented identical parts of latitude-longitude grid. In [5] it was
shown that the Schwarz domain decomposition method can be successfully applied
to linear SWEs. In each subdomain the same system of equations is discretized
by an implicit time method using the same time step where at each time step an
elliptic problem is solved. In [5] this method was used to solve the 1D SWEs on
the circle and the elliptic problem was solved by the iterative optimized Schwarz
method (see [2] and references therein). In this paper we apply the same method to
the 2D linear SWEs on the Yin-Yang grid. We show that it is possible to increase
the convergence of the optimized Schwarz method for solving the elliptic problem
by using the substructuring formulation. Because the two subgrids of the Yin-Yang
grid do not match, the variable update at the subdomain interfaces is done by cubic
Lagrange interpolation. The complete 2D linear SWE solutions on the Yin-Yang
grid are compared to integrations using the spectral model on a Gaussian grid and
a finite-difference model on a latitude-longitude grid. The paper is organized as
follows: in Section 2, we present the 2D linear SWEs with their discretized form and
solution method, in Section 3 the 2D positive definite Helmhotz problem is solved on
the Yin-Yang grid, the solver is either an iterative formulation or an substructuring
formulation of the optimized Schwarz method, in Section 4 numerical results are
shown and finally concluding remarks are given in Section 5.
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Fig. 1. Yin-Yang grid system. The Yang grid is shown on the left, the Yin grid in
the middle, and their composition on the right

2 The 2D Linear Shallow Water Equations

In this section, we develop an implicit global linear shallow-water model on the
sphere by using a domain decomposition method on Yin-Yang grid. The major goal
of this work is the demonstration that this type of grid system removes the poles
problems. Each of two component of Yin-Yang overset grid spans the Subregion Sl,
l = 1, 2, defined by

S(l) = {(λ, θ); |θ| ≤ π

4
+ δ |λ| ≤ 3π

4
+ δ}, (1)

where (λ, θ) are the longitude and the latitude with respect to the local cartesian
referential (see [1]) and δ is the minimum overlap. The relationship between the Yin
coordinate and Yang coordinate is denoted in cartesian coordinates by

(x(l), y(l), z(l)) = (−x(3−l), z(3−l), y(3−l)) l = 1, 2. (2)

The governing equations for each subdomain l, l = 1, 2 are the linear SWEs on a
non rotating sphere of radius a

[
∂U (l)

∂t
+

1

a2

∂φ(l)

∂λ

]
= 0, (3)

[
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]
= 0, (4)

[
∂φ(l)

∂t
+ φ∗D(l)

]
= 0, (5)

where a is the Earth radius, (U , V ) are the wind images [wind multiplied by cos θ
a

],
φ the perturbation geopotential from the reference geopotential φ∗ and D is the
divergence defined by

D =
1

cos2 θ
(
∂U

∂λ
+ cos θ

∂V

∂θ
). (6)

The φ field gradient components and divergence D give rise to high frequency gravity
waves. They are always integrated implicitly in time, enabling the use of a long time
step ∆t. A time discretization of equations (3)-(5) is
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where τ = ∆t/2. As for the 1D SWEs in [5], the second order finite difference spatial
discretization is done on a staggered Arakawa C grid [1] where the variables U , V
and φ are carried at alternate points in space on (U -grid), (v−grid) and (φ-grid),
respectively. We use (N,M) grid points for the scalar (φ-grid), (N-1,M) grid points
for (U -grid) and (N,M-1) grid points for (V -grid). The discretized equations on each
subdomain l are
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where hλ, hθ are the grid spacing along the longitudinal and latitudinal directions
respectively. The resulting equations (10)-(12) are combined to obtain a single dis-
cretized elliptic equation (14) for φ which is solved by the optimized Schwarz method
discussed in the following sub-sections, and the wind is updated by equations (3)-(4).
Then given fields U (l), V (l) and φ(l) at the previous time step, the solution method
is summarized as follows:

• The right-hand sides R
(l)
U , R

(l)
V and R

(l)
φ are calculated in parallel on the two

subdomains.
• The elliptic problem is solved and the geopotential φ(l) is updated on the two

subdomains. Interpolation and communication are required to obtain values at
subdomain interfaces.

• The wind vector fields (U (l),V (l)) are updated in parallel on the two subdomains.

2.1 Iterative Formulation of the Optimized Schwarz Method

Similar to the classical Schwarz method, we solve the discretized problems iteratively
in each subdomain
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where η = a
φ∗∆t2

is a positive and constant parameter and R is the corresponding

right-hand-side function. Following the ideas of [2], we use the following discretiza-

tions of the higher order transmission conditions on each interface Γ
(l)
d (d = 1, · · · 4)

∂φ(l),k

∂νl
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l

.

(15)
The symbol ∂

∂νl
stands for the normal derivative of each subdomain and ∂

∂τl
is the

corresponding tangential derivative. The α
(l)
d , β

(l)
d are real parameters introduced to

optimize the performance of the method. We obtain these coefficients numerically,
assuming the coefficients α

(l)
d and β

(l)
d are independent of the boundary d and are

antisymmetric, i.e.
α

(1)
d = −α(2)

d , β
(1)
d = −β(2)

d . (16)

In Fig. 2 we represent the performance for the solution of the elliptic problem where
each subdomain consists of 90×30 grid points, the overlap δ is one grid point spacing
and the Helmhotz coefficient η is equal to one. For the approximate optimal values
of the parameters α

(l)
d and β

(l)
d , the corresponding methods (see Fig. 2) converge in a

small number of iterations and the convergence is much better than the convergence
of the classical Schwarz method. This gain more than compensates for the extra cost
of computing the needed additional derivatives.

2.2 Substructuring Formulation of the Optimized Schwarz Method

It is possible to both increase the robustness of the optimized Schwarz method and
its convergence speed by replacing the above fixed point iterative solver by a Krylov-
type method (see [2] and references therein). This is made possible by substructuring

the algorithm in terms of interface unknowns, that we denote here by T
(l)
d for each

subdomain l and interface d. We consider the substructuring formulation of the
elliptic problem in equations (14)-(15) where the unknowns T

(l)
d are equal to the

right-hand side of equation (15), and we rewrite the problem to be solved on each
subdomain as

A(l)φ(l) = R(l)

B
(l)
d φ(l) = B

(l)
d φ(3−l) = T

(l)
d ,

(17)

where B
(l)
d is the transmission operator which is the identity in the case of Dirich-

let conditions. In the previous iterative Schwarz method we solve iteratively, with
iteration number k = 1, . . . , kmax, in each subdomain the system of equations

A(l)φ(l),k = R(l) +B
(l)
d φ(3−l),k−1 = R(l) + T

(l),k−1
d , (18)

where the matrix A(l) now includes the corrections from the transmission conditions.
The Schwarz method corresponds then to the solution for the interface problem
unknowns T

(l)
d by the Jacobi algorithm

T
(l),k
d = B

(l)
d (A(3−l))−1T

(3−l),k−1
d +B

(l)
d (A(3−l))−1R(3−l). (19)

We can improve the convergence by considering GMRES, or any other Krylov
method, in order to solve the interface system of equations
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[
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T
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]
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]
. (20)

The spectral radius of the left-hand-side matrix in equation (20) depends on the

choice of the interface conditions B
(l)
d . Once the interfaces functions T

(l)
d are known,

the subproblem solutions are updated in parallel. In Table 1 we consider the two
interface equation solvers, Jacobi and GMRES, and we give the number of iterations
so that the maximum error is smaller than 10−6. We see that the optimized Robin
or second-order transmission conditions give a significant improvement when using
either solver.
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Fig. 2. Convergence behavior for the iterative classical Schwarz and the iterative
optimized Schwarz methods, overlap = 1h and η = 1

Table 1. Number of iterations for 3 interface conditions and 2 solvers. Each panel
is 90 × 30, overlap= 1h and η = 1.

Boundary Cond. ASM GMRES

Dirichlet 116 26

Robin 20 12

Second order 16 9

3 Numerical Results

In order to assess the capability of the Yin-Yang grid to alleviate the pole problem,
we consider the solutions for the 2D linear SWEs on both a global latitude-longitude
grid and the Yin-Yang grid and we compare them with a spectral model solution
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which is free of the pole problem. We start from an initial state at rest (U and
V = 0) with the initial geopotential perturbation given by:

φ(λ, θ, t = 0) = 2 Ωau0 sin3(θ) cos(θ) sin(λ) (21)

where Ω = 0.00007292s−1, and u0 = 20m/s. If we expand φ in terms of truncated
series of spherical harmonics, its spectrum shows that the non-zero contributions
are only from total wavenumbers 2 and 4. We take a global lat-lon grid with the
resolution 80 ×40, Yin-Yang grid with resolution 60×20 in each panel, and we com-
pare with an equivalent spectral model with a truncation at wavenumber 39. There
must be no interaction between the time tendencies of different spectral coefficients.
No new spectral mode can appear during the evolution from the initial state. The
spectrum (not plotted here) of the perturbation of the geopotential given by the 3
models after 4 hours shows that for the spectral model the only non zeros are the
contributions from wavenumbers 2 and 4 and the initial energy, initially potential,
is now divided into kinetic and potential parts. In the spectrum of the perturbation
of the geopotential given by using the lat-lon grid and the Yin-Yang grid, there are
non zero contributions from wavenumbers other than 2 and 4, however the energy at
these wavenumbers is much smaller when using the Yin-Yang grid. We show in Fig.
3 the difference between the perturbation of the geopotential after 4 hours given by
using the lat-lon and Yin-Yang gridpoint models and by the spectral model. For lat-
lon we can see that the biggest difference is near the poles. The difference between
the solution on the Yin-Yang grid and the spectral model is the same everywhere
on the globe. The maximum difference after 24 hours (not shown here) between the
Yin-Yang gridpoint model and the spectral model solutions corresponds to only 1
m height difference. We can conclude that the use of the quasi-uniform Yin-Yang
grid eliminates the pole problem and gives much more accurate solutions than with
the standard lat-lon grid.
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Fig. 3. Geopotential differences between spectral and Lat/lon (left), Yin-Yang and
spectral (right). The two subfigures have not the same scale

4 Conclusion

In this paper we have shown that the Schwarz domain decomposition methods are
practical for obtaining solutions of the linear SWEs on the sphere with the overset
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grid system Yin-Yang. In a previous study [5] the convergence analysis of the 1D it-
erative solution of the elliptic problem on the circle yielded an analytical formula for
the optimized coefficients of the transmission conditions. In this paper the optimized
coefficients for the 2D case on the Yin-Yang grid were found numerically and it was
possible to both increase the robustness of the optimized Schwarz method and its
convergence speed by using the substructuring formulation. We have demonstrated
that the use of the quasi-uniform Yin-Yang grid effectively eliminates the pole prob-
lem and gives more accurate solutions than when using the latitude-longitude grid.

We have not yet validated the full 2D SWEs model on the Yin-Yang grid, but
2D passive semi-Lagrangian advection has been thoroughly tested for this grid, see
[5, 6], and the results were comparable to the value in [3]. In future work we will
complete the validation of the SWEs with the Yin-Yang grid using the test set of
Williamson et al. [7], and finally we will consider the Yin-Yang grid system with
more than one regular subdomain in each panel.
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