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Summary. In this paper we present a FETI-DP type algorithm for solving the
system of algebraic equations arising from the mortar finite element discretization
of a fourth order problem on a nonconforming mesh. A conforming reduced Hsieh-
Clough-Tocher macro element is used locally in the subdomains. We present new
FETI-DP discrete problems and later introduce new parallel preconditioners for two
cases: where there are no crosspoints in the coarse division of subdomains and in
the general case.

1 Introduction

The mortar methods are effective methods for constructing approximations of PDE
problems on nonconforming meshes. They impose weak integral coupling conditions
across the interfaces on the discrete solutions, cf. [1].

In this paper we present a FETI-DP method (dual primal Finite Element Tear-
ing and Interconnecting, see [6, 9, 8]) for solving discrete problems arising from a
mortar discretization of a fourth order model problem. The original domain is di-
vided into subdomains and a local conforming reduced HCT (Hsieh-Clough-Tocher)
macro element discretization is introduced in each subdomain. The discrete space is
constructed using mortar discretization, see [10]. Then the degrees of freedom corre-
sponding to the interior nodal points are eliminated as usually in all substructuring
methods. The remaining system of unknowns is solved by a FETI-DP method.

Many variants of FETI-DP methods for solving systems arising from the dis-
cretizations on a single conforming mesh of second and fourth order problems are
fully analyzed, cf. [9, 8].

Recently there have been a few FETI-DP type algorithms for mortar discretiza-
tion of second order problems, cf. [11, 5, 4, 3], and [7].

To our knowledge there are no FETI type algorithms for solving systems of
equations arising from a mortar discretization of a fourth order problem in the
literature.
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The remainder of the paper is organized as follows. In Section 2 we introduce
our differential and discrete problems. When there are no crosspoints in the coarse
division of the domain, the FETI operator takes a much simpler form and therefore
this case is presented separately together with a parallel preconditioner in Section 3,
while Section 4 is dedicated to a short description of the FETI-DP operator and a
respective preconditioner in the general case.

2 Differential and Discrete Problems

Let Ω be a polygonal domain in R2. Then our model problem is to find u∗ ∈ H2
0 (Ω)

such that
a(u∗, v) = f(v) v ∈ H2

0 (Ω), (1)

where u∗ is the displacement, f ∈ L2(Ω) is the body force,

a(u, v) =

∫

Ω

[△u△v + (1− ν) (2ux1x2vx1x2 − ux1x1vx2x2 − ux2x2vx1x1)] dx.

Here
H2

0 (Ω) = {v ∈ H2(Ω) : v = ∂nv = 0 on ∂Ω},
∂n is the normal unit derivative outward to ∂Ω, and uxixj := ∂2u

∂xi∂xj
for i, j = 1, 2.

We assume that the Poisson ratio ν satisfies 0 < ν < 1/2. From the Lax-Milgram
theorem and the continuity and ellipticity of the bilinear form a(· , ·) it follows that
there exists a unique solution of this problem.

Next we assume that Ω is a union of disjoint polygonal substructures Ωi which
form a coarse triangulation of Ω, i.e. the intersection of the boundaries of two dif-
ferent subdomains ∂Ωk ∩ ∂Ωl, k 6= l, is either the empty set, a vertex or a common
edge. We also assume that this triangulation is shape regular in the sense of Section
2, p. 5 in [2].

An important role is played by the interface Γ , defined as the union of all open
edges of substructures, which are not on the boundary of Ω.

In each subdomain Ωk we introduce a quasiuniform triangulation Th(Ωk) made
of triangles. Let hk = maxτ∈Th(Ωk) diam τ be the parameter of this triangulation.

In each Ωk we introduce a local conforming reduced Hsieh-Clough-Tocher
(RHCT) macro finite element space Xh(Ωk) as follows, cf. Figure 1:

Xh(Ωk) = {v ∈ C1(Ωk) : v|τ ∈ P3(τi), for triangles τi, i = 1, 2, 3, (2)

formed by connecting the vertices of τ ∈ Th(Ωk) to

its centroid, ∂nv is linear on each edge of ∂τ, and

v = ∂nv = 0 on ∂Ωk ∩ ∂Ω}.

The degrees of freedom of RHCT macro elements are given by

{u(pi), ux1(pi), ux2(pi)} , i = 1, 2, 3, (3)

for the three vertices pi of an element τ ∈ Th(Ωk), cf. Figure 1.
We introduce next an auxiliary global space Xh(Ω) =

∏N
k=1Xh(Ωk), and the so

called broken bilinear form:
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Fig. 1. Reduced HCT element

ah(u, v) =
N∑

k=1

ak(u, v),

where

ak(u, v) =

∫

Ωk

[△u△v + (1− ν) (2ux1x2vx1x2 − ux1x1vx2x2 − ux2x2vx1x1)] dx.

Then let X(Ω) be the subspace of Xh(Ω) consisting of all functions which have
all degrees of freedom (dofs) of the RHCT elements continuous at the crosspoints –
the vertices of the substructures.

The interface Γkl which is a common edge of two neighboring substructures Ωk
and Ωl inherits two 1D independent triangulations: Th,k(Γkl) – the hk one from
Th(Ωk) and Th,l(Γkl) – the hl one from Th(Ωl). Hence we can distinguish the sides
(or meshes) of this interface. Let γm,k be the side of Γkl associated with Ωk and
called master (mortar) and let δm,l be the side corresponding to Ωl and called slave
(nonmortar). Note that both the master and the slave occupy the same geometrical
position of Γkl. The set of vertices of Th,k(γm,k) on γm,k is denoted by γm,k,h and
the set of nodes of Th,l(δm,l) on δm,l by δm,l,h. In order to obtain our results we need
a technical assumption of a uniform bound for the ratio hγm/hδm for any interface
Γkl = γm,k = δm,l.

An important role in our algorithm is played by four trace spaces onto the edges
of the substructures. For each interface Γkl = ∂Ωk ∩ ∂Ωl let Wt,k(Γkl) be the space
of C1 continuous functions piecewise cubic on the 1D triangulation Th,k(Γkl) and let
Wn,k(Γkl) be the space of continuous piecewise linear functions on Th,k(Γkl). The
spaces Wt,l(Γkl) and Wn,l(Γkl) are defined analogously, but on the hl triangulation
Th,l(Γkl) of Γkl.

Note that these four spaces are the tangential and normal trace spaces onto the
interface Γkl ⊂ Γ of functions from Xh(Ωk) and Xh(Ωl), respectively.

We also need to introduce two test function spaces for each slave δm,l = Γkl. Let
Mt(δm,l) be the space of all C1 continuous piecewise cubic on Th,l(δm,l) functions
which are linear on the two end elements of Th,l(δm,l) and let Mn(δm,l) be the space
of all continuous piecewise linear on Th,l(δm,l) functions which are constant on the
two end elements of Th,l(δm,l).

We now define the global space M(Γ ) =
∏
δm,l⊂Γ Mt(δm,l)×Mn(δm,l) and the

bilinear form b(u, ψ) defined over X(Ω) ×M(Γ ) as follows: let u = (u1, . . . , uN ) ∈
X(Ω) and ψ = (ψm)δm = (ψm,t, ψm,n)δm ∈M(Γ ), then let
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b(u, ψ) =
∑

δm⊂Γ
bm,t(u, ψm,t) + bm,n(u, ψm,n)

with

bm,t(u, ψm,t) =

∫

δm

(uk − ul)ψm,y ds (4)

bm,n(u, ψm,n) =

∫

δm

(∂nuk − ∂nul)ψm,n ds. (5)

Then our discrete problem is to find the pair (u∗h, λ
∗) ∈ X(Ω)×M(Γ ) such that

ah(u∗h, v) + b(v, λ∗) = f(v) ∀v ∈ X(Ω) (6)

b(u∗h, φ) = 0 ∀φ ∈M(Γ ). (7)

Note that if we introduce the discrete space

V h = {u ∈ X(Ω) : b(u, φ) = 0 ∀φ ∈M(Γ )}

then u∗h is the unique function in V h that satisfies

ah(u∗h, v) = f(v) ∀v ∈ V h,

which is a standard mortar discrete problem formulation, cf. e.g. [10].
Note that we can split the matrix K(l) – the matrix representation of al(u, v) in

the standard nodal basis of Xh(Ωl) as:

K(l) :=



K

(l)
ii K

(l)
ic K

(l)
ir

K
(l)
ci K

(l)
cc K

(l)
cr

K
(l)
ri K

(l)
rc K

(l)
rr


 , (8)

where in the rows the indices i, c and r refer to the unknowns u(i) corresponding
to the interior nodes, u(c) to the crosspoints, and u(r) to the remaining nodes, i.e.
those related to the edges.

2.1 Matrix Form of the Mortar Conditions

Note that (7) is equivalent to two mortar conditions on each slave δm,l = γm,k = Γkl:

bm,t(u, φ) =

∫

δm

(uk − ul)φ ds = 0 ∀φ ∈Mt(δm,l) (9)

bm,n(u, ψ) =

∫

δm

(∂nuk − ∂nul)ψ ds = 0 ∀ψ ∈Mn(δm,l). (10)

Introducing the following splitting of two vectors representing the tangential and
normal traces uδm,l and ∂nuδm,l we get uδm,l = u

(r)
δm,l

+ u
(c)
δm,l

and ∂nuδm,l =

∂nu
(r)
δm,l

+ ∂nu
(c)
δm,l

on a slave δm,l ⊂ ∂Ωl, cf. (8). We can now rewrite (9) and

(10) in a matrix form as

B
(r)
t,δm,l

u
(r)
δm,l

+B
(c)
t,δm,l

u
(c)
δm,l

= B
(r)
t,γm,k

u(r)
γm,k

+B
(c)
t,γm,k

u(c)
γm,k

, (11)
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B
(r)
n,δm,l

∂nu
(r)
δm,l

+B
(c)
n,δm,l

∂nu
(c)
δm,l

= B(r)
n,γm,k

∂nu
(r)
γm,k

+B(c)
n,γm,k

∂nu
(c)
γm,k

,

where the matrices Bt,δm,l = (B
(r)
t,δm,l

, B
(c)
t,δm,l

) and Bn,δm,l = (B
(r)
t,γm,k

, B
(c)
t,γm,k

)

are mass matrices obtained by substituting the standard nodal basis functions of
Wt,l(δm,l),Wn,l(δm,l) and Mt(δm,l),Mn(δm,l) into (9) and (10), respectively i.e.

Bt,δm,l = {(φx,s, ψy,r)}x,y∈δm,l,h
s,r=0,1

φx,s ∈Wt(δm,l), ψy,r ∈Mt(δm,l), (12)

Bn,δm,l = {(φx, ψy)}x,y∈δm,l,h φx ∈Wn(δm,l), ψy ∈Mn(δm,l), (13)

where φx,s, (ψx,s ) is a nodal basis function of Wt(δm,l), (Mt(δm,l)) associated with
a vertex x of Th,l(δm,l) and is either a value if s = 0 or a derivative if s = 1, and
φx ∈ Wn,l(δm,l) and ψx,∈ Mn(δm,l) are nodal basis function of these respective
spaces equal to one at the node x and zero at all remaining nodal points on δm,l.

The matrices Bt,γm,k = (B
(r)
n,δm,l

, B
(c)
n,δm,l

), and Bn,γm,k = (B
(r)
n,γm,k , B

(c)
n,γm,k ) are

defined analogously.
Note that B

(r)
t,δm,l

, B
(r)
n,δm,l

are positive definite square matrices, see e.g. [10], but

the other matrices in (11) are in general rectangular.
We also need the block-diagonal matrices

Bδm,l =

(
Bt,δm,l 0

0 Bn,δm,l

)
Bγk,l =

(
Bt,γk,l 0

0 Bn,γk,l

)
. (14)

3 FETI-DP Problem – No Crosspoints Case

In this section we present a FETI-DP formulation for the case with no crosspoints,
i.e. two subdomains are either disjoint or have a common edge, cf. Figure 2. In this
case both the FETI-DP problem and the preconditioner are fully parallel and simple
to describe and implement.

Ω1
Ω1

Ω2

Ω2

Ω3

Ω3 Ω4

Fig. 2. Decompositions of Ω into subdomains with no crosspoints

3.1 Definition of the FETI Method

We now reformulate the system (6)–(7) as follows

K :=



Kii Kir 0
Kri Krr B

T
r

0 Br 0





u(i)

u(r)

λ̃∗


 =



fi
fr
0


 , (15)
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where Br = diag{Br,δm,l}δm with Br,δm,l =
(
Iδm,l , −(B

(r)
δm,l

)−1B
(r)
γm,k

)
. Here Krr

and Kii are block diagonal matrices of K
(l)
rr and K

(l)
ii , respectively, cf. (8), and

λ̃∗ = {(B(r)
δm,l

)T }λ∗.
Next the unknowns related to interior nodes and crosspoints, i.e. u(i) in (15),

are eliminated, which yields a new system

Su(r) +BTr λ̃
∗ = gr,

Bru
(r) = 0,

(16)

where S = Krr −Kri (Kii)
−1Kir and gr = fr −Kri (Kii)

−1 fi. We now eliminate
u(r) and we end up with the following FETI-DP problem – find λ̃∗ ∈ M(Γ ) such
that

F (λ̃∗) = d, (17)

where d = BrS
−1gr and F = BrS

−1BTr . Note that both S and B are block diagonal
matrices due to the assumption that there are no crosspoints.

Next we introduce the following parallel preconditioner

M−1 = BrSB
T
r . (18)

3.2 Convergence Estimates

We say that the coarse triangulation is in Neumann-Dirichlet ordering if every sub-
domain has either all edges as slaves or all as mortars. In the case of no crosspoints
it is always possible to choose the master-slave sides so as to obtain an N-D ordering
of subdomains.

We have the following theorem in which a condition bound is established:

Theorem 1. For any λ ∈M(Γ ) it holds that

c (1 + log(H/h)p 〈Mλ, λ〉 ≤ 〈Fλ, λ〉 ≤ C 〈Mλ, λ〉 ,

where c and C are positive constants independent of any mesh parameters, H =
maxkHk and h = mink hk, p = 0 in the case of Neumann-Dirichlet ordering and
p = 2 in general case.

4 General Case

Here we present briefly the case with crosspoints: the matrix formulation of (6)–(7)
is as follows:

K :=




Kii Kic Kir 0

Kci K̃cc Kcr B
T
c

Kri Krc Krr B
T
r

0 Bc Br 0







u(i)

u(c)

u(r)

λ̃∗


 =




fi
fc
fr
0


 , (19)

where the global block matrices Bc = diag{Bc,δm,l} and Br = diag{Br,δm,l} are
split into local ones defined over the vector representation spaces of traces on the
interface Γkl = γm,k = δm,l:
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Bc,δm,l =
(

(B
(r)
δm,l

)−1B
(c)
δm,l

, −(B
(r)
δm,l

)−1B(c)
γm,k

)
, (20)

and Br,δm,l is defined in (15). Here K̃cc is a block built of K
(l)
cc taking into account

the continuity of dofs at crosspoints, λ̃∗ = {(B(r)
δm,l

)T }λ∗, and Krr and Kii are block

diagonal matrices as in (15).
Next we eliminate the unknowns related to the interior nodes and crosspoints

i.e. u(i), u(c) in (19) and we get

Ŝu(r) + B̂T λ̃∗ = f̂r,

B̂u(r) + Ŝccλ̃
∗ = f̂c,

(21)

where the matrices are defined as follows: Ŝ = Krr − (Kri Krc)K̃
−1
i&c

(
Kir

Kcr

)
,

B̂ = Br − (0 Bc)K̃
−1
i&c

(
Kir

Kcr

)
, and Ŝcc = −(0 Bc)K̃

−1
i&c

(
0
BTc

)
with

K̃i&c =

(
Kii Kic

Kci K̃cc

)
. We now eliminate u(r) and we end up with finding λ̃∗ ∈M(Γ )

such that
F (λ̃∗) = d, (22)

where d = fc − B̂Ŝ−1fr and F = Ŝcc − B̂Ŝ−1B̂T .
Next we introduce the following parallel preconditioner: M−1 = BrSrrB

T
r where

Srr = diag{S(l)
rr }Nl=1 with S

(l)
rr = (K

(l)
rr −K(l)

ri (K
(l)
ii )−1K

(l)
ir ), i.e. S

(l)
rr is the respective

submatrix of the Schur matrix S(l) over Ωl.
Then in the case of Neumann-Dirichlet ordering we have that the condition

number κ(M−1F ) is bounded by (1 + log(H/h)2 and in the general case by (1 +
log(H/h)4.
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