A FETI-DP Method for Mortar Finite Element Discretization of a Fourth Order Problem

Leszek Marcinkowski ${ }^{1 *}$ and Nina Dokeva ${ }^{2}$
${ }^{1}$ Department of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland, 1marcin@mimuw.edu.pl
${ }^{2}$ Department of Mathematics and Computer Science, Clarkson University, PO Box 5815, Potsdam, NY 13699-5815, USA, ndokeva@clarkson.edu

Summary. In this paper we present a FETI-DP type algorithm for solving the system of algebraic equations arising from the mortar finite element discretization of a fourth order problem on a nonconforming mesh. A conforming reduced Hsieh-Clough-Tocher macro element is used locally in the subdomains. We present new FETI-DP discrete problems and later introduce new parallel preconditioners for two cases: where there are no crosspoints in the coarse division of subdomains and in the general case.

1 Introduction

The mortar methods are effective methods for constructing approximations of PDE problems on nonconforming meshes. They impose weak integral coupling conditions across the interfaces on the discrete solutions, cf. [1].

In this paper we present a FETI-DP method (dual primal Finite Element Tearing and Interconnecting, see $[6,9,8]$) for solving discrete problems arising from a mortar discretization of a fourth order model problem. The original domain is divided into subdomains and a local conforming reduced HCT (Hsieh-Clough-Tocher) macro element discretization is introduced in each subdomain. The discrete space is constructed using mortar discretization, see [10]. Then the degrees of freedom corresponding to the interior nodal points are eliminated as usually in all substructuring methods. The remaining system of unknowns is solved by a FETI-DP method.

Many variants of FETI-DP methods for solving systems arising from the discretizations on a single conforming mesh of second and fourth order problems are fully analyzed, cf. [9, 8].

Recently there have been a few FETI-DP type algorithms for mortar discretization of second order problems, cf. [11, 5, 4, 3], and [7].

To our knowledge there are no FETI type algorithms for solving systems of equations arising from a mortar discretization of a fourth order problem in the literature.

[^0]The remainder of the paper is organized as follows. In Section 2 we introduce our differential and discrete problems. When there are no crosspoints in the coarse division of the domain, the FETI operator takes a much simpler form and therefore this case is presented separately together with a parallel preconditioner in Section 3, while Section 4 is dedicated to a short description of the FETI-DP operator and a respective preconditioner in the general case.

2 Differential and Discrete Problems

Let Ω be a polygonal domain in \mathbb{R}^{2}. Then our model problem is to find $u^{*} \in H_{0}^{2}(\Omega)$ such that

$$
\begin{equation*}
a\left(u^{*}, v\right)=f(v) \quad v \in H_{0}^{2}(\Omega) \tag{1}
\end{equation*}
$$

where u^{*} is the displacement, $f \in L^{2}(\Omega)$ is the body force,

$$
a(u, v)=\int_{\Omega}\left[\triangle u \Delta v+(1-\nu)\left(2 u_{x_{1} x_{2}} v_{x_{1} x_{2}}-u_{x_{1} x_{1}} v_{x_{2} x_{2}}-u_{x_{2} x_{2}} v_{x_{1} x_{1}}\right)\right] d x
$$

Here

$$
H_{0}^{2}(\Omega)=\left\{v \in H^{2}(\Omega): v=\partial_{n} v=0 \text { on } \partial \Omega\right\}
$$

∂_{n} is the normal unit derivative outward to $\partial \Omega$, and $u_{x_{i} x_{j}}:=\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}$ for $i, j=1,2$. We assume that the Poisson ratio ν satisfies $0<\nu<1 / 2$. From the Lax-Milgram theorem and the continuity and ellipticity of the bilinear form $a(\cdot, \cdot)$ it follows that there exists a unique solution of this problem.

Next we assume that Ω is a union of disjoint polygonal substructures Ω_{i} which form a coarse triangulation of Ω, i.e. the intersection of the boundaries of two different subdomains $\partial \Omega_{k} \cap \partial \Omega_{l}, k \neq l$, is either the empty set, a vertex or a common edge. We also assume that this triangulation is shape regular in the sense of Section 2, p. 5 in [2].

An important role is played by the interface Γ, defined as the union of all open edges of substructures, which are not on the boundary of Ω.

In each subdomain Ω_{k} we introduce a quasiuniform triangulation $T_{h}\left(\Omega_{k}\right)$ made of triangles. Let $h_{k}=\max _{\tau \in T_{h}\left(\Omega_{k}\right)} \operatorname{diam} \tau$ be the parameter of this triangulation.

In each Ω_{k} we introduce a local conforming reduced Hsieh-Clough-Tocher (RHCT) macro finite element space $X_{h}\left(\Omega_{k}\right)$ as follows, cf. Figure 1:

$$
\begin{aligned}
X_{h}\left(\Omega_{k}\right)= & \left\{v \in C^{1}\left(\Omega_{k}\right): \quad v_{\mid \tau} \in P_{3}\left(\tau_{i}\right), \text { for triangles } \tau_{i}, \quad i=1,2,3\right. \\
& \text { formed by connecting the vertices of } \tau \in T_{h}\left(\Omega_{k}\right) \text { to } \\
& \text { its centroid, } \partial_{n} v \text { is linear on each edge of } \partial \tau, \text { and } \\
& \left.v=\partial_{n} v=0 \text { on } \partial \Omega_{k} \cap \partial \Omega\right\} .
\end{aligned}
$$

The degrees of freedom of RHCT macro elements are given by

$$
\begin{equation*}
\left\{u\left(p_{i}\right), u_{x_{1}}\left(p_{i}\right), u_{x_{2}}\left(p_{i}\right)\right\}, \quad i=1,2,3 \tag{3}
\end{equation*}
$$

for the three vertices p_{i} of an element $\tau \in T_{h}\left(\Omega_{k}\right)$, cf. Figure 1.
We introduce next an auxiliary global space $X_{h}(\Omega)=\prod_{k=1}^{N} X_{h}\left(\Omega_{k}\right)$, and the so called broken bilinear form:

Fig. 1. Reduced HCT element

$$
a_{h}(u, v)=\sum_{k=1}^{N} a_{k}(u, v)
$$

where

$$
a_{k}(u, v)=\int_{\Omega_{k}}\left[\triangle u \Delta v+(1-\nu)\left(2 u_{x_{1} x_{2}} v_{x_{1} x_{2}}-u_{x_{1} x_{1}} v_{x_{2} x_{2}}-u_{x_{2} x_{2}} v_{x_{1} x_{1}}\right)\right] d x
$$

Then let $X(\Omega)$ be the subspace of $X_{h}(\Omega)$ consisting of all functions which have all degrees of freedom (dofs) of the RHCT elements continuous at the crosspoints the vertices of the substructures.

The interface $\Gamma_{k l}$ which is a common edge of two neighboring substructures Ω_{k} and Ω_{l} inherits two 1D independent triangulations: $T_{h, k}\left(\Gamma_{k l}\right)$ - the h_{k} one from $T_{h}\left(\Omega_{k}\right)$ and $T_{h, l}\left(\Gamma_{k l}\right)$ - the h_{l} one from $T_{h}\left(\Omega_{l}\right)$. Hence we can distinguish the sides (or meshes) of this interface. Let $\gamma_{m, k}$ be the side of $\Gamma_{k l}$ associated with Ω_{k} and called master (mortar) and let $\delta_{m, l}$ be the side corresponding to Ω_{l} and called slave (nonmortar). Note that both the master and the slave occupy the same geometrical position of $\Gamma_{k l}$. The set of vertices of $T_{h, k}\left(\gamma_{m, k}\right)$ on $\gamma_{m, k}$ is denoted by $\gamma_{m, k, h}$ and the set of nodes of $T_{h, l}\left(\delta_{m, l}\right)$ on $\delta_{m, l}$ by $\delta_{m, l, h}$. In order to obtain our results we need a technical assumption of a uniform bound for the ratio $h_{\gamma_{m}} / h_{\delta_{m}}$ for any interface $\Gamma_{k l}=\gamma_{m, k}=\delta_{m, l}$.

An important role in our algorithm is played by four trace spaces onto the edges of the substructures. For each interface $\Gamma_{k l}=\partial \Omega_{k} \cap \partial \Omega_{l}$ let $W_{t, k}\left(\Gamma_{k l}\right)$ be the space of C^{1} continuous functions piecewise cubic on the 1 D triangulation $T_{h, k}\left(\Gamma_{k l}\right)$ and let $W_{n, k}\left(\Gamma_{k l}\right)$ be the space of continuous piecewise linear functions on $T_{h, k}\left(\Gamma_{k l}\right)$. The spaces $W_{t, l}\left(\Gamma_{k l}\right)$ and $W_{n, l}\left(\Gamma_{k l}\right)$ are defined analogously, but on the h_{l} triangulation $T_{h, l}\left(\Gamma_{k l}\right)$ of $\Gamma_{k l}$.

Note that these four spaces are the tangential and normal trace spaces onto the interface $\Gamma_{k l} \subset \Gamma$ of functions from $X_{h}\left(\Omega_{k}\right)$ and $X_{h}\left(\Omega_{l}\right)$, respectively.

We also need to introduce two test function spaces for each slave $\delta_{m, l}=\Gamma_{k l}$. Let $M_{t}\left(\delta_{m, l}\right)$ be the space of all C^{1} continuous piecewise cubic on $T_{h, l}\left(\delta_{m, l}\right)$ functions which are linear on the two end elements of $T_{h, l}\left(\delta_{m, l}\right)$ and let $M_{n}\left(\delta_{m, l}\right)$ be the space of all continuous piecewise linear on $T_{h, l}\left(\delta_{m, l}\right)$ functions which are constant on the two end elements of $T_{h, l}\left(\delta_{m, l}\right)$.

We now define the global space $M(\Gamma)=\prod_{\delta_{m, l} \subset \Gamma} M_{t}\left(\delta_{m, l}\right) \times M_{n}\left(\delta_{m, l}\right)$ and the bilinear form $b(u, \psi)$ defined over $X(\Omega) \times M(\Gamma)$ as follows: let $u=\left(u_{1}, \ldots, u_{N}\right) \in$ $X(\Omega)$ and $\psi=\left(\psi_{m}\right)_{\delta_{m}}=\left(\psi_{m, t}, \psi_{m, n}\right)_{\delta_{m}} \in M(\Gamma)$, then let

$$
b(u, \psi)=\sum_{\delta_{m} \subset \Gamma} b_{m, t}\left(u, \psi_{m, t}\right)+b_{m, n}\left(u, \psi_{m, n}\right)
$$

with

$$
\begin{align*}
b_{m, t}\left(u, \psi_{m, t}\right) & =\int_{\delta_{m}}\left(u_{k}-u_{l}\right) \psi_{m, y} d s \tag{4}\\
b_{m, n}\left(u, \psi_{m, n}\right) & =\int_{\delta_{m}}\left(\partial_{n} u_{k}-\partial_{n} u_{l}\right) \psi_{m, n} d s \tag{5}
\end{align*}
$$

Then our discrete problem is to find the pair $\left(u_{h}^{*}, \lambda^{*}\right) \in X(\Omega) \times M(\Gamma)$ such that

$$
\begin{align*}
a_{h}\left(u_{h}^{*}, v\right)+b\left(v, \lambda^{*}\right) & =f(v) & & \forall v \in X(\Omega) \tag{6}\\
b\left(u_{h}^{*}, \phi\right) & =0 & & \forall \phi \in M(\Gamma) \tag{7}
\end{align*}
$$

Note that if we introduce the discrete space

$$
V^{h}=\{u \in X(\Omega): b(u, \phi)=0 \quad \forall \phi \in M(\Gamma)\}
$$

then u_{h}^{*} is the unique function in V^{h} that satisfies

$$
a_{h}\left(u_{h}^{*}, v\right)=f(v) \quad \forall v \in V^{h}
$$

which is a standard mortar discrete problem formulation, cf. e.g. [10].
Note that we can split the matrix $K^{(l)}$ - the matrix representation of $a_{l}(u, v)$ in the standard nodal basis of $X_{h}\left(\Omega_{l}\right)$ as:

$$
K^{(l)}:=\left(\begin{array}{ccc}
K_{i i}^{(l)} & K_{i c}^{(l)} & K_{i r}^{(l)} \tag{8}\\
K_{c i}^{(l)} & K_{c c}^{(l)} & K_{c r}^{(l)} \\
K_{r i}^{(l)} & K_{r c}^{(l)} & K_{r r}^{(l)}
\end{array}\right)
$$

where in the rows the indices i, c and r refer to the unknowns $u^{(i)}$ corresponding to the interior nodes, $u^{(c)}$ to the crosspoints, and $u^{(r)}$ to the remaining nodes, i.e. those related to the edges.

2.1 Matrix Form of the Mortar Conditions

Note that (7) is equivalent to two mortar conditions on each slave $\delta_{m, l}=\gamma_{m, k}=\Gamma_{k l}$:

$$
\begin{array}{cc}
b_{m, t}(u, \phi)=\int_{\delta_{m}}\left(u_{k}-u_{l}\right) \phi d s=0 & \forall \phi \in M_{t}\left(\delta_{m, l}\right) \\
b_{m, n}(u, \psi)=\int_{\delta_{m}}\left(\partial_{n} u_{k}-\partial_{n} u_{l}\right) \psi d s=0 & \forall \psi \in M_{n}\left(\delta_{m, l}\right) \tag{10}
\end{array}
$$

Introducing the following splitting of two vectors representing the tangential and normal traces $u_{\delta_{m, l}}$ and $\partial_{n} u_{\delta_{m, l}}$ we get $u_{\delta_{m, l}}=u_{\delta_{m, l}}^{(r)}+u_{\delta_{m, l}}^{(c)}$ and $\partial_{n} u_{\delta_{m, l}}=$ $\partial_{n} u_{\delta_{m, l}}^{(r)}+\partial_{n} u_{\delta_{m, l}}^{(c)}$ on a slave $\delta_{m, l} \subset \partial \Omega_{l}$, cf. (8). We can now rewrite (9) and (10) in a matrix form as

$$
\begin{equation*}
B_{t, \delta_{m, l}}^{(r)} u_{\delta_{m, l}}^{(r)}+B_{t, \delta_{m, l}}^{(c)} u_{\delta_{m, l}}^{(c)}=B_{t, \gamma_{m, k}}^{(r)} u_{\gamma_{m, k}}^{(r)}+B_{t, \gamma_{m, k}}^{(c)} u_{\gamma_{m, k}}^{(c)} \tag{11}
\end{equation*}
$$

$$
B_{n, \delta_{m, l}}^{(r)} \partial_{n} u_{\delta_{m, l}}^{(r)}+B_{n, \delta_{m, l}}^{(c)} \partial_{n} u_{\delta_{m, l}}^{(c)}=B_{n, \gamma_{m, k}}^{(r)} \partial_{n} u_{\gamma_{m, k}}^{(r)}+B_{n, \gamma_{m, k}}^{(c)} \partial_{n} u_{\gamma_{m, k}}^{(c)}
$$

where the matrices $B_{t, \delta_{m, l}}=\left(B_{t, \delta_{m, l}}^{(r)}, B_{t, \delta_{m, l}}^{(c)}\right)$ and $B_{n, \delta_{m, l}}=\left(B_{t, \gamma_{m, k}}^{(r)}, B_{t, \gamma_{m, k}}^{(c)}\right)$ are mass matrices obtained by substituting the standard nodal basis functions of $W_{t, l}\left(\delta_{m, l}\right), W_{n, l}\left(\delta_{m, l}\right)$ and $M_{t}\left(\delta_{m, l}\right), M_{n}\left(\delta_{m, l}\right)$ into (9) and (10), respectively i.e.

$$
\begin{align*}
B_{t, \delta_{m, l}} & =\left\{\left(\phi_{x, s}, \psi_{y, r}\right)\right\}_{\substack{x, y \in \delta_{m, l, h}^{s, r=0,1}}} \tag{12}\\
B_{n, \delta_{m, l}} & =\left\{\left(\phi_{x}, \psi_{y}\right)\right\}_{x, y \in \delta_{m, l, h}} \tag{13}
\end{align*} \quad \phi_{x} \in W_{t}\left(\delta_{m, l}\right), \psi_{y, r} \in M_{t}\left(\delta_{m, l}\right), \psi_{y} \in M_{n}\left(\delta_{m, l}\right), ~ l
$$

where $\phi_{x, s},\left(\psi_{x, s}\right)$ is a nodal basis function of $W_{t}\left(\delta_{m, l}\right),\left(M_{t}\left(\delta_{m, l}\right)\right)$ associated with a vertex x of $T_{h, l}\left(\delta_{m, l}\right)$ and is either a value if $s=0$ or a derivative if $s=1$, and $\phi_{x} \in W_{n, l}\left(\delta_{m, l}\right)$ and $\psi_{x}, \in M_{n}\left(\delta_{m, l}\right)$ are nodal basis function of these respective spaces equal to one at the node x and zero at all remaining nodal points on $\bar{\delta}_{m, l}$. The matrices $B_{t, \gamma_{m, k}}=\left(B_{n, \delta_{m, l}}^{(r)}, B_{n, \delta_{m, l}}^{(c)}\right)$, and $B_{n, \gamma_{m, k}}=\left(B_{n, \gamma_{m, k}}^{(r)}, B_{n, \gamma_{m, k}}^{(c)}\right)$ are defined analogously.

Note that $B_{t, \delta_{m, l}}^{(r)}, B_{n, \delta_{m, l}}^{(r)}$ are positive definite square matrices, see e.g. [10], but the other matrices in (11) are in general rectangular.

We also need the block-diagonal matrices

$$
B_{\delta_{m, l}}=\left(\begin{array}{cc}
B_{t, \delta_{m, l}} & 0 \tag{14}\\
0 & B_{n, \delta_{m, l}}
\end{array}\right) \quad B_{\gamma_{k, l}}=\left(\begin{array}{cc}
B_{t, \gamma_{k, l}} & 0 \\
0 & B_{n, \gamma_{k, l}}
\end{array}\right)
$$

3 FETI-DP Problem - No Crosspoints Case

In this section we present a FETI-DP formulation for the case with no crosspoints, i.e. two subdomains are either disjoint or have a common edge, cf. Figure 2. In this case both the FETI-DP problem and the preconditioner are fully parallel and simple to describe and implement.

Fig. 2. Decompositions of Ω into subdomains with no crosspoints

3.1 Definition of the FETI Method

We now reformulate the system (6)-(7) as follows

$$
K:=\left(\begin{array}{ccc}
K_{i i} & K_{i r} & 0 \tag{15}\\
K_{r i} & K_{r r} & B_{r}^{T} \\
0 & B_{r} & 0
\end{array}\right)\left(\begin{array}{c}
u^{(i)} \\
u^{(r)} \\
\tilde{\lambda}^{*}
\end{array}\right)=\left(\begin{array}{c}
f_{i} \\
f_{r} \\
0
\end{array}\right)
$$

where $B_{r}=\operatorname{diag}\left\{B_{r, \delta_{m, l}}\right\}_{\delta_{m}}$ with $B_{r, \delta_{m, l}}=\left(\begin{array}{ll}\left.I_{\delta_{m, l}}, \quad-\left(B_{\delta_{m, l}}^{(r)}\right)^{-1} B_{\gamma_{m, k}}^{(r)}\right) . \text { Here } K_{r r} .\end{array}\right.$ and $K_{i i}$ are block diagonal matrices of $K_{r r}^{(l)}$ and $K_{i i}^{(l)}$, respectively, cf. (8), and $\tilde{\lambda}^{*}=\left\{\left(B_{\delta_{m, l}}^{(r)}\right)^{T}\right\} \lambda^{*}$.

Next the unknowns related to interior nodes and crosspoints, i.e. $u^{(i)}$ in (15), are eliminated, which yields a new system

$$
\begin{array}{r}
S u^{(r)}+B_{r}^{T} \tilde{\lambda}^{*}=g_{r}, \\
B_{r} u^{(r)}=0, \tag{16}
\end{array}
$$

where $S=K_{r r}-K_{r i}\left(K_{i i}\right)^{-1} K_{i r}$ and $g_{r}=f_{r}-K_{r i}\left(K_{i i}\right)^{-1} f_{i}$. We now eliminate $u^{(r)}$ and we end up with the following FETI-DP problem - find $\tilde{\lambda}^{*} \in M(\Gamma)$ such that

$$
\begin{equation*}
F\left(\tilde{\lambda}^{*}\right)=d, \tag{17}
\end{equation*}
$$

where $d=B_{r} S^{-1} g_{r}$ and $F=B_{r} S^{-1} B_{r}^{T}$. Note that both S and B are block diagonal matrices due to the assumption that there are no crosspoints.

Next we introduce the following parallel preconditioner

$$
\begin{equation*}
M^{-1}=B_{r} S B_{r}^{T} . \tag{18}
\end{equation*}
$$

3.2 Convergence Estimates

We say that the coarse triangulation is in Neumann-Dirichlet ordering if every subdomain has either all edges as slaves or all as mortars. In the case of no crosspoints it is always possible to choose the master-slave sides so as to obtain an N-D ordering of subdomains.

We have the following theorem in which a condition bound is established:
Theorem 1. For any $\lambda \in M(\Gamma)$ it holds that

$$
c\left(1+\log (H / \underline{h})^{p}\langle M \lambda, \lambda\rangle \leq\langle F \lambda, \lambda\rangle \leq C\langle M \lambda, \lambda\rangle\right.
$$

where c and C are positive constants independent of any mesh parameters, $H=$ $\max _{k} H_{k}$ and $\underline{h}=\min _{k} h_{k}, p=0$ in the case of Neumann-Dirichlet ordering and $p=2$ in general case.

4 General Case

Here we present briefly the case with crosspoints: the matrix formulation of (6)-(7) is as follows:

$$
K:=\left(\begin{array}{cccc}
K_{i i} & K_{i c} & K_{i r} & 0 \tag{19}\\
K_{c i} & \tilde{K}_{c} & K_{c r} & B_{c}^{T} \\
K_{r i} & K_{r c} & K_{r r} & B_{r}^{T} \\
0 & B_{c} & B_{r} & 0
\end{array}\right)\left(\begin{array}{c}
u^{(i)} \\
u^{(c)} \\
u^{(r)} \\
\tilde{\lambda}^{*}
\end{array}\right)=\left(\begin{array}{c}
f_{i} \\
f_{c} \\
f_{r} \\
0
\end{array}\right),
$$

where the global block matrices $B_{c}=\operatorname{diag}\left\{B_{c, \delta_{m, l}}\right\}$ and $B_{r}=\operatorname{diag}\left\{B_{r, \delta_{m, l}}\right\}$ are split into local ones defined over the vector representation spaces of traces on the interface $\Gamma_{k l}=\gamma_{m, k}=\delta_{m, l}$:

$$
\begin{equation*}
B_{c, \delta_{m, l}}=\left(\left(B_{\delta_{m, l}}^{(r)}\right)^{-1} B_{\delta_{m, l}}^{(c)}, \quad-\left(B_{\delta_{m, l}}^{(r)}\right)^{-1} B_{\gamma_{m, k}}^{(c)}\right), \tag{20}
\end{equation*}
$$

and $B_{r, \delta_{m, l}}$ is defined in (15). Here $\tilde{K}_{c c}$ is a block built of $K_{c c}^{(l)}$ taking into account the continuity of dofs at crosspoints, $\tilde{\lambda}^{*}=\left\{\left(B_{\delta_{m, l}}^{(r)}\right)^{T}\right\} \lambda^{*}$, and $K_{r r}$ and $K_{i i}$ are block diagonal matrices as in (15).

Next we eliminate the unknowns related to the interior nodes and crosspoints i.e. $u^{(i)}, u^{(c)}$ in (19) and we get

$$
\begin{align*}
& \hat{S} u^{(r)}+\hat{B}^{T} \tilde{\lambda}^{*}=\hat{f}_{r}, \\
& \hat{B} u^{(r)}+\hat{S}_{c c} \tilde{\lambda}^{*}=\hat{f}_{c}, \tag{21}
\end{align*}
$$

where the matrices are defined as follows: $\hat{S}=K_{r r}-\left(\begin{array}{ll}K_{r i} & K_{r c}\end{array}\right) \tilde{K}_{i \& c}^{-1}\binom{K_{i r}}{K_{c r}}$,

$\tilde{K}_{i \& c}=\left(\begin{array}{cc}K_{i i} & K_{i c} \\ K_{c i} & \tilde{K}_{c c}\end{array}\right)$. We now eliminate $u^{(r)}$ and we end up with finding $\tilde{\lambda}^{*} \in M(\Gamma)$ such that

$$
\begin{equation*}
F\left(\tilde{\lambda}^{*}\right)=d \tag{22}
\end{equation*}
$$

where $d=f_{c}-\hat{B} \hat{S}^{-1} f_{r}$ and $F=\hat{S}_{c c}-\hat{B} \hat{S}^{-1} \hat{B}^{T}$.
Next we introduce the following parallel preconditioner: $M^{-1}=B_{r} S_{r r} B_{r}^{T}$ where $S_{r r}=\operatorname{diag}\left\{S_{r r}^{(l)}\right\}_{l=1}^{N}$ with $S_{r r}^{(l)}=\left(K_{r r}^{(l)}-K_{r i}^{(l)}\left(K_{i i}^{(l)}\right)^{-1} K_{i r}^{(l)}\right)$, i.e. $S_{r r}^{(l)}$ is the respective submatrix of the Schur matrix $S^{(l)}$ over Ω_{l}.

Then in the case of Neumann-Dirichlet ordering we have that the condition number $\kappa\left(M^{-1} F\right)$ is bounded by $\left(1+\log (H / \underline{h})^{2}\right.$ and in the general case by $(1+$ $\log (H / \underline{h})^{4}$.

References

[1] C. Bernardi, Y. Maday, and A.T. Patera. A new nonconforming approach to domain decomposition: the mortar element method. In Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. XI (Paris, 1989-1991), volume 299 of Pitman Res. Notes Math. Ser., pages 13-51. Longman Sci. Tech., Harlow, 1994.
[2] S.C. Brenner. The condition number of the Schur complement in domain decomposition. Numer. Math., 83(2):187-203, 1999.
[3] N. Dokeva, M. Dryja, and W. Proskurowski. A FETI-DP preconditioner with a special scaling for mortar discretization of elliptic problems with discontinuous coefficients. SIAM J. Numer. Anal., 44(1):283-299, 2006.
[4] M. Dryja and W. Proskurowski. On preconditioners for mortar discretization of elliptic problems. Numer. Linear Algebra Appl., 10(1-2):65-82, 2003.
[5] M. Dryja and O.B. Widlund. A FETI-DP method for a mortar discretization of elliptic problems. In Recent developments in domain decomposition methods (Zürich, 2001), volume 23 of Lect. Notes Comput. Sci. Eng., pages 41-52. Springer, Berlin, 2002.
[6] C. Farhat, M. Lesoinne, and K. Pierson. A scalable dual-primal domain decomposition method. Numer. Linear Algebra Appl., 7(7-8):687-714, 2000.
[7] H.H. Kim and C.-O. Lee. A preconditioner for the FETI-DP formulation with mortar methods in two dimensions. SIAM J. Numer. Anal., 42(5):2159-2175, 2005.
[8] A. Klawonn, O.B. Widlund, and M. Dryja. Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J. Numer. Anal., 40(1):159-179, 2002.
[9] J. Mandel and R. Tezaur. On the convergence of a dual-primal substructuring method. Numer. Math., 88(3):543-558, 2001.
[10] L. Marcinkowski. A mortar element method for some discretizations of a plate problem. Numer. Math., 93(2):361-386, 2002.
[11] D. Stefanica and A. Klawonn. The FETI method for mortar finite elements. In Eleventh International Conference on Domain Decomposition Methods (London, 1998), pages 121-129. DDM.org, Augsburg, 1999.

[^0]: * This work was partially supported by Polish Scientific Grant 2/P03A/005/24.

