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Summary. This is a further development of [9] regarding multilevel preconditioning
for symmetric interior penalty discontinuous Galerkin finite element approximations
of second order elliptic problems. We assume that the mesh on the finest level is a
results of a geometrically refined fixed coarse mesh. The preconditioner is a multilevel
method that uses a sequence of finite element spaces of either continuous or piece-
wise constant functions. The spaces are nested, but due to the penalty term in
the DG method the corresponding forms are not inherited. For the continuous finite
element spaces we show that the variable V-cycle provides an optimal preconditioner
for the DG system. The piece-wise constant functions do not have approximation
property so in order to control the energy growth of the inter-level transfer operator
we apply W–cycle MG. Finally, we present a number of numerical experiments that
support the theoretical findings.

1 Introduction

Consider the following model second order elliptic problem on a bounded
domain with a polygonal boundary Ω ⊂ Rd, d = 2, 3:

−∇ · (a(x)∇u) = f(x) in Ω, u(x) = g on ∂Ω. (1)

Here a is a uniformly positive in Ω and piece-wise W 1
∞(Ω)-function that may

have jumps along some interfaces. The theoretical results can be easily ex-
tended to a coefficient matrix a and more general boundary conditions.

Our goal is to study iterative methods for a symmetric interior penalty
discontinuous Galerkin finite element approximations of (1) over a partition
T of Ω into finite elements denoted by K. We assume that the partition is
quasi uniform and regular. For a finite element K we denote by hK its size
and h = maxK∈T hK. Further, we use the following notations concerning T :
E0 is the set of all interior edges/faces, Eb is the set of the edges/faces on
the boundary ∂Ω and E = E0 ∪ Eb. In fact, T , E , etc are sets depending on
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the mesh-size h. However, in order to avoid proliferation of indices and since
we are dealing exclusively with algebraic problems we shall not explicitly
denote this dependence on the mesh-size. We also use a hierarchy of meshes
T1 ⊂ · · · ⊂ TJ which are obtained by geometric refinement of a coarse mesh
T1. Thus, T = TJ and Tk is the mesh generated after k−1 levels of refinement
of T1. When the index k, showing the dependence on the refinement level, is
suppressed this means that the quantities are defined on the finest level.

We introduce the spaces

Hs(T ) =
{
v ∈ L2(Ω) : v|K ∈ Hs(K), ∀K ∈ T

}
, for s ≥ 0 (2)

and for r ≥ 0 integer we define the finite element space

V := V(T ) := {v ∈ L2(Ω) : v|K ∈ Pr(K), K ∈ T }, (3)

where Pr is the set of polynomials of total degree at most r restricted to K.
On V we define the bilinear forms

(a∇u,∇v)T :=
∑

K∈T

∫

K

a∇u,∇v dx, 〈p, q〉E :=
∑

e∈E

∫

e

pq ds.

On e = K̄1 ∩ K̄2 ∈ E we define the jump of a scalar function v ∈ V by

[[v]]e :=

{
v|K1

nK1
+ v|K2

nK2
, e = K̄1 ∩ K̄2, i.e. e ∈ E0,

v|KnK, e = K̄ ∩ ∂Ω, i.e. e ∈ Eb

and the average value of the traces of a∇v for v ∈ V:

{{a∇v}} |e :=

{
1
2{a∇v|K1

+ a∇v|K2
}, e = K̄1 ∩ K̄2, i.e. e ∈ E0,

a∇v|K, e = K̄ ∩ ∂Ω, i.e. e ∈ Eb.

Here nK is the external unit vector normal to the boundary ∂K of K ∈ T .
Next, we define the piecewise constant function hE on E as

hE = hE(x) = |e| 1
d−1 , for x ∈ e, e ∈ E , d = 2, 3. (4)

And finally, we introduce the following mesh-dependent norm on V:

|||v|||2 = (a∇v,∇v)T +
〈
h−1
E κE [[v]] , [[v]]

〉
E
. (5)

The stabilization factor κE is weighted by the coefficient a, namely, κE =
κ {{a}}, where {{a}} is the average value of a from both sides of e ∈ E . This
choice of the penalty gives rise to a DG bilinear form (7) that is equivalent to
the norm (5) with constants independent of the jumps of a.

We consider the following symmetric interior penalty discontinuous Galer-
kin (SIPG) finite element approximation of (1) (see, e.g. [1, 2]):

find uh ∈ V such that A(uh, v) = L(v) ∀v ∈ V, (6)
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where V is the finite element space and A(·, ·), L(·) are bilinear and linear
forms on V defined by

A(uh, v) ≡ (a∇uh,∇v)T −〈{{a∇uh}} , [[v]]〉E −〈[[uh]] , {{a∇v}}〉E
+
〈
h−1
E κE [[uh]] , [[v]]

〉
E

(7)

and

L(v) =

∫

Ω

fvdx+

∫

∂Ω

(h−1
E κEv − a∇v · n) g ds. (8)

It is known (see, e.g. [2]) that SIPG (6) – (8) is stable for sufficiently large
κ > 0 and has optimal convergence in H1-like norm (5). This is just one
example of a large number of DG FEM approximations of second order elliptic
problems that have been introduced and studied in the last several years (see,
e.g. [2, 9]).

The aim of this paper is to introduce and study multilevel iterative meth-
ods for the corresponding algebraic problems. Note that the condition number
of the DG FE system grows like O(h−2) on a quasi uniform mesh with mesh-
size h. Therefore construction of optimal solution methods, i.e. with arithmetic
work proportional to the numbers of unknowns, that is robust with respect
to large variations of the coefficient a is an important problem from both
theoretical and practical points of view.

The work of Gopalakrishnan and Kanschat [10], the first one we are aware
of, studied the variable V-cycle multigrid operator as a preconditioner of the
symmetric DG system. Under certain weak regularity assumptions on geomet-
rically nested meshes it was shown in [10] that the condition number of the
preconditioned system is O(1), i.e. bounded independently of h. The analysis
of the preconditioner is based on the abstract multigrid theory [7] for non-
inherited bilinear forms and the estimates for interior penalty finite element
method. Further, Brenner and Zhao [8] studied V-cycle, W-cycle, and F-cycle
algorithms for the symmetric DG FE schemes on rectangular meshes and
showed that they produce uniform preconditioners for sufficiently many pre-
and post smoothing steps. Their analysis is based on certain mesh dependent
norms and a relationship of the discontinuous FE spaces to some higher order
continuous finite element spaces. Our approach is slightly different, it could
be seen as the classical two-level method applied to the DG linear systems.
We explore two different possibilities for a choice of the second level, namely,
continuous piece-wise polynomial functions and piece-wise constant functions.

2 MG Preconditioner Using Spaces of Continuous
Functions

We assume that we have a sequence of nested globally quasi-uniform tri-
angulations Tk, k = 1, . . . , J , of the domain Ω with T1 being the coarsest
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triangulation. According to the convention from the introduction the set of
all edges/faces of elements in Tk is denoted by Ek, the sets of the interior and
boundary edges/faces are denoted by E0

k and Eb
k, respectively, and hk is the

diameter of a typical element in Tk and hEk
is defined by (4) on Ek. Then

Hs(Tk) and Vk are the spaces (2) and (3), respectively, defined on Tk. The
corresponding continuous discrete spaces are defined as Vc

k = Vk ∩ C(Ω).
For functions u and v in Hs(Tk), s > 3

2 , we define the interior penalty
(SIPG) bilinear and linear forms according to (7) for the mesh Tk:

Ak(u, v) = (a∇u,∇v)Tk
+
〈
h−1
Ek
κE [[u]] , [[v]]

〉
Ek

− 〈{{a∇u}} , [[v]]〉Ek
− 〈{{a∇v}} , [[u]]〉Ek

,

Lk(v) =

∫

Ω

fv +
〈
h−1
Ek
κEg, v

〉
Eb

k

− 〈a∇v · n, g〉Eb
k
.

With these definitions, the interior penalty discontinuous Galerkin method
for the elliptic problem (1) reads: find uh ∈ VJ such that

AJ (uh, v) = LJ (v), ∀v ∈ VJ . (9)

Let |||·|||k be the norm (5) defined on the mesh Tk. It is well known that
there exists κ0 such that for κ > κ0 the following norm equivalence on Vk

holds Ak(v, v) ≃ |||v|||2k , ∀v ∈ Vk, with constants in the norm equivalence

independent of hk, i.e. Ak(v, v)
1
2 is a norm on Vk.

Lemma 1. Consider the case of homogeneous boundary condition, g = 0, and
assume that the solution u of (1) belongs to H1+α(Ω) for some 1

2 < α ≤ 1.
Let uk ∈ Vk (or Vc

k) be the solution of Ak(uk, v) = Lk(v), ∀v ∈ Vk (Vc
k). Then

the following error estimate holds

|||u− uk|||k ≤ Chα
k‖u‖1+α

with a constant C independent of hk.

Sketch of the proof. To prove this estimate one can use the Galerkin or-
thogonality, the boundedness of Ak(·, ·) in the norm |||u|||α,k = |||u|||2k +∑

K∈Tk
h2α

k |u|21+α,K for u ∈ H1+α(Tk) and the approximation properties of
the space Vk. Note that in contrast to the work [10] instead of using the quan-

tity Ak(·, ·) 1
2 , which in general is not a norm on H1+α(Tk), we work directly

in the norm |||u|||α,k.
Now we define the variable V-cycle MG preconditioner.

3 Variable V -Cycle Multigrid Preconditioner

In this Section we shall follow the general theory of multigrid methods as
presented by Bramble and Zhang in [7, Chapter II, Section 7]. We will use the
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following sequence of nested spaces: MJ+1 = V, i.e. this is the space where
the SIPG method is defined; for k = 1, . . . , J we take Mk = Vc

k the continuous
finite element space. The corresponding bilinear forms Ak(·, ·) are defined
above for k = 1, . . . , J ; for k = J + 1 we let AJ+1(u, v) = A(u, v). Define the
operators Ak : Mk →Mk, Qk : L2(Ω) →Mk, and Pk : Mk+1 →Mk by

(Aku, v) = Ak(u, v), ∀v ∈Mk, k = 1, . . . , J + 1,

(Qku, v) = (u, v), ∀v ∈Mk, k = 1, . . . , J + 1,

Ak(Pku, v) = Ak+1(u, v), ∀v ∈Mk, k = 1, . . . , J,

where (·, ·) denotes the inner product in L2(Ω). Note that because of the
penalty term the forms Ak(u, v) defined on the spaces Vk vary. Assume we
are given the smoothing operators Rk : Mk → Mk that satisfy appropriate
smoothing property (see, [7, Chapter II, Section 7, p. 260]). One can show
that scaled Jacobi and Gauss-Seidel iterations satisfy this requirement.

Let Bk be the operator of the MG method based on the sequence of spaces
M1 ⊂ · · · ⊂ MJ ⊂ MJ+1, with mk pre- and post-smoothing steps with the
smoother Rk. Note that to retain the symmetry of certain operators on odd
steps we apply Rk, while on even steps we apply Rt

k, where the transposition
is with respect to the (·, ·)-inner product.

The following assumption will be used in the study of the MG method.
Assumption A.1: For any f ∈ H−1+ρ(Ω) with 1

2 < ρ ≤ 1 and g = 0 the
problem (1) has a unique solution u ∈ H1+ρ(Ω) and ‖u‖H1+ρ ≤ CΩ‖f‖H−1+ρ

with a constant CΩ .
For this setting, we prove the following main result (see, e.g. [7]):

Theorem 1. Let the Assumption A.1 hold. Assume also that for some 1 <
β0 ≤ β1 we have β0mk ≤ mk−1 ≤ β1mk. Then there is a constant M inde-
pendent of k such that

η−1
k Ak(v, v) ≤ Ak(BkAkv, v) ≤ ηk Ak(v, v), ∀v ∈Mk

with ηk =
M+mα

k

mα
k

and α as in Lemma 1.

Sketch of the proof. The proof essentially checks the conditions (of “smoothing
and approximation”) from [7] under which this theorem is proved. The first
condition essentially requires that Rk is a smoother. It is well known that
Gauss-Seidel or scaled Jacobi satisfy this condition.

Now we outline the main steps in the proof of the second condition which
is: for some α ∈ (0, 1] there is a constant CP independent of k such that

| Ak((I − Pk−1)v, v)| ≤ CP

(‖Akv‖2

λk

)α

[Ak(v, v)]1−α, (10)

where λk is the largest eigenvalue of the operator Ak. This is established in
several steps.



38 V.A. Dobrev, R.D. Lazarov, L.T. Zikatanov

First, we show that under the Assumption A.1 for all u ∈ Mk, k =
2, . . . , J+1 we have |||u− Pk−1u|||k ≤ Chρ

k‖Aku‖−1+ρ, where |||·|||J+1 = |||·|||J .
Next, we show that

‖Aku‖−1 ≤ C |||u|||k , ∀u ∈Mk (11)

and
|||u− Pk−1u|||k ≤ Chρ

k‖Aku‖−1+ρ ≤ Chρ
k‖Aku‖1−ρ

−1 ‖Aku‖ρ. (12)

Finally, using the estimates (12) and (11) and the fact that H−1+ρ(Ω) is an
intermediate space between H−1(Ω) and L2(Ω) we obtain

| Ak(u− Pk−1u, u)| ≤ Chρ
k‖Aku‖1−ρ

−1 ‖Aku‖ρ |||u|||k

≤ C
‖Aku‖ρ

λ
ρ/2
k

|||u|||2−ρ
k = C

(‖Aku‖2

λk

) ρ
2

Ak(u, u)1−
ρ
2

which is exactly the required result with α = ρ/2.

Remark 1. This results is quite similar to the results of [10] and [8] in the
sense that it proves the convergence of the variable V-cycle MG and ensures
better convergence for smoother solutions. The difference is the choice of the
hierarchy of finite element spaces used on the consecutive levels and the proof
of the fundamental estimate (10). After closer inspection of the proof one can
see easily that one can take Mk = Vk, for all k ≥ k0 ≥ 1. In fact, making
this choice with k0 = 1 will lead to the result of [10] (with a slightly different
proof).

4 Multigrid W -Cycle for Piecewise-Constant Spaces

In this section we consider a method for the solution of the coarse problem,
when a two level method with coarse space, denoted here with MJ , of piece-
wise constant functions. We will also take a standard multilevel hierarchy of
this space, given by the subspaces Mk, of piecewise constant functions on grids
with size hk. Let us note that such two level algorithm is attractive, because
of its simplicity and low number of degrees of freedom. However, it is well
known that using the hierarchy given by Mk and applying standard V-cycle
on MJ does not lead to an optimal algorithm.

In this section we briefly describe how a general ν-fold cycle can be applied
to solve the coarse grid problem when piece-wise constant functions are used
to define this problem. Note that on general meshes the piecewise constant
functions do not provide approximation and one cannot apply the theory of
MG methods in a manner used in [5] for cell-centered schemes on regular
rectangular meshes. To introduce the ν-fold MG cycle algorithm, we consider
the recursive definition of a general multilevel method as in [7]. Assuming that
we know the action of Bk−1 on Mk−1, for a given f ∈Mk we define the action
Bkf as follows.

Recursive definition of a multilevel algorithm:
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1. x = Rkg.
2. y = x+ ZkBk−1Qk−1(f −Akx).
3. Bkf = y +Rt

k(g −Aky).

Now, for a fixed e ∈Mk, we consider Eke = (I −BkAk)e. It is easy to derive
the following error equation:

Eke = (I −Rt
kAk)(I − ZkBk−1Ak−1Pk−1)(I −RkAk)e.

In the case, when {Mk}J
k=1 are the spaces of discontinuous piece-wise constant

functions we shall define Zk, using the techniques from [12, 3, 4], namely we
shall choose Zk to be a polynomial in (Bk−1Ak−1). Indeed, in such case the
second term in the product form of the error equation is as follows.

Xk = I − ZkBk−1Ak−1Pk−1 = I − (I − pν(Bk−1Ak−1))Pk−1.

Usually, pν(t) is of degree less than or equal to ν, pν(t) is non-negative for
t ∈ [0, 1], and pν(0) = 1. Taking pν(t) = (1 − t)ν gives the ν-fold MG cycle.
For ν = 1 this is the V -cycle and for ν = 2, this is the W -cycle. Note also that,
for pν(t) = (1− t)ν , we have Xk = I −Pk−1 +Eν

k−1Pk−1. Hence, if the degree
of the polynomial is sufficiently large and Ek−1 is a contraction on Mk−1,
then the corresponding ν-fold cycle can be made as close as we please to a
two-level iteration. As it is well known, the two level iteration, is uniformly
convergent [9].

We would like to point out that an adaptive choice of the polynomials pν

is possible, and we refer to [12, 3, 4] for strategies how to make such choices
and also for many theoretical results for these methods.

A crucial property of the coarser spaces, that determines the convergence
of such multilevel process, in general, is the stability of projections on coarser
spaces. A basic assumption in the analysis is the existence of constants q ≥ 1
and C (both independent of k and l) and such that

‖Qlv‖2 ≤ Cqk−l‖v‖Ak
, ∀v ∈Mk, k > l. (13)

Clearly, if q = 1, then the resulting V-cycle algorithm has convergence rate
depending only logarithmically on the mesh size, without any regularity as-
sumptions on the underlying elliptic equation (see [6]). The ν-fold cycle, how-
ever, works even in cases, when q > 1, by increasing the polynomial degree ν
when needed. Since the goal is to construct an optimal algorithm, the overall
computational complexity gives a restriction on ν. Practical values are ν = 2
or ν = 3. In case ν = 2 (W -cycle), which we have used in most of our nu-
merical experiments in the next section, a uniform convergence result can be
proved in a fashion similar to the case of variable V -cycle. In such analysis, an
essential ingredient are bounds on q from (13) and such estimates for piece-
wise constant spaces on uniformly refined hexahedral, quadrilateral as well as
simplicial grids are given in [11, 9].
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5 Numerical Experiments

We present three test problems of elliptic equation with homogeneous Dirichlet
boundary conditions:
Test Problem 1: The equation −∆u = 1 in the cube Ω = (0, 1)3;
Test Problem 2: The equation −∇ · (a∇u) = 1 in Ω = (0, 1)3 \ [0.5, 1)3 where
the coefficient a has jumps (a 3-D chess-board pattern) as follows: a = 1, in
(I1 × I1 × I1)∪ (I2 × I2 × I1)∪ (I1 × I2 × I2)∪ (I2 × I1 × I2) and a = ǫ, in the
other parts of Ω, where I1 = (0, 0.5] and I2 = (0.5, 1], and we vary the value
of ǫ according to the data in the Tables;
Test Problem 3: The equation −∆u = 1 in the domain shown on Figure 1.

The second test problem is designed to check the robustness of the methods
with respect to jumps of the coefficient a. The mesh of test problem 3 has a
number of finite elements of high aspect ration and the aim was to see how
the iteration methods perform on such grids.

For all test examples we have used a coarse tetrahedral mesh which is uni-
formly refined to form a sequence of nested meshes. In SIPG we use linear and
quadratic finite elements. The value of the penalty term was experimentally
chosen to be κ = 15 for linear, and κ = 30 for quadratic finite elements (cf.
(5), (7)).

Fig. 1. Coarse meshes for the second (left) and third (right) test problems.

We test the following multilevel preconditioners for the SIPG method:

1. the V -cycle preconditioner based on continuous elements with one pre-
and one post-smoothing Gauss-Seidel iteration.

2. W -cycle preconditioner based on piecewise constant coarse spaces using
one pre- and post-smoothing steps of symmetric Gauss-Seidel smoother.

3. variable V -cycle preconditioner based on continuous elements described
in Section 3 with one pre- and post-smoothing Gauss-Seidel iteration on
the finest level and double the pre- and post-smoothing iteration on each
consecutive coarser level.

The numerical results are summarised below. In each table we give the number
of iterations in the PCG algorithm and the corresponding average reduction
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factor for each test run. In addition we include the number of degrees of
freedom (DOF) in the DG space, V, and the DOF for the first coarse space
(defined on the finest mesh) of either continuous piecewise polynomial func-
tions or piecewise constants.

Table 1. Numerical results for SIPG with linear FE: V -cycle based on continuous
linear FE and W -cycle based on piece-wise constant functions with one pre- and one
post-smoothing Gauss-Seidel iteration.

Test Problem 1 Level 2 Level 3 Level 4 Level 5 Level 6

DOF SIPG 3 072 24 576 196 608 1 572 864 12 582 912

preconditioner DOF 189 1 241 9 009 68 705 536 769
continuous FE 14/0.2556 14/0.2614 14/0.2572 14/0.2487 13/0.2344

preconditioner DOF 768 6 144 49 152 393 216 3 145 728
piecewise constant 24/0.4493 29/0.5238 30/0.5374 30/0.5342 29/0.5276

Table 2. Numerical results for SIPG with quadratic FE: V -cycle preconditioner
based on continuous FE and W -cycle preconditioner based on piecewise constant
functions each with one pre- and one post-smoothing Gauss-Seidel iteration.

Test Problem 1 Level 1 Level 2 Level 3 Level 4 Level 5

DOF SIPG 960 7 680 61 440 491 520 3 932 160

preconditioner DOF 189 1 241 9 009 68 705 536 769
continuous FE 10/0.1414 11/0.1717 11/0.1747 11/0.1657 10/0.1514

preconditioner DOF 96 768 6 144 49 152 393 216
piecewise constant 22/0.4315 35/0.5810 42/0.6442 43/0.6509 43/0.6496

In Tables 1 and 2 we present the computational results for test problem 1.
These results show that both preconditioners, the V -cycle, that uses contin-
uous finite elements, and the W -cycle, that uses piece-wise constant function
on all coarser levels are optimal with respect to the number of iterations. The
W -cycle preconditioner, based on piecewise constant functions, performs ac-
cording to the W -cycle theory. However, it needs two times more iterations
compared with the V -cycle, based on continuous functions. While the former
has a matrix of size about 6 times larger than size of the matrix of the latter
(for linear FE), one should have in mind that in the case of piece-wise constant
functions the corresponding matrix has only five nonzero entries per row, i.e.
it is about five times sparser than the matrix produced by continuous linear
elements. Unfortunately, we do not have a theory for the V -cycle.

It is known that the choice of the stabilization factor κE could affect the
properties of the method. To test sensitivity of the preconditioners with re-
spect to the jumps of the coefficient a we considered two different choices,
κE = κ {{a}}, as defined in the SIPG method, and κE = κ‖a‖L∞ = 15,
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Table 3. V -cycle and variable V -cycle based on continuous coarse spaces for the
SIPG with linear elements and stabilization factor κE that does not depend on the
jumps of a.

Test Problem 2 Level 1 Level 2 Level 3 Level 4

DOF of SIPG 1 344 10 752 86 016 688 128

precond. DOF - continuous linear 117 665 4 401 31 841

ǫ = 1, V -cycle 15/0.2750 16/0.2946 15/0.2908 15/0.2838

ǫ = 0.1, V -cycle 17/0.3322 19/0.3645 19/0.3717 19/0.3675

ǫ = 0.01, V -cycle 17/0.3219 19/0.3632 19/0.3746 19/0.3713

ǫ = 0.001, V -cycle 15/0.2929 17/0.3377 18/0.3527 18/0.3488

ǫ = 1, variable V -cycle 15/0.2738 15/0.2900 15/0.2850 15/0.2759

ǫ = 0.1, variable V -cycle 17/0.3310 18/0.3593 19/0.3658 18/0.3566

ǫ = 0.01, variable V -cycle 17/0.3211 18/0.3568 19/0.3684 18/0.3582

ǫ = 0.001, variable V -cycle 15/0.2919 17/0.3333 18/0.3457 17/0.3337

which obviously is independent of the jumps. As shown in Table 3 the vari-
able V -cycle preconditioner, covered by our theory, gives the same number of
iterations as the V -cycle. Both preconditioners are not sensitive to the choice
of κE . From Table 3 one can see that the preconditioners based on continuous
coarse spaces are robust in this case with respect to the jumps in a. However,
this is not the case for the preconditioners based on piece-wise constant coarse
spaces. We observe this in Table 4 where the performance of the W -cycle is
given. From these experiments we see that a proper weighting of the jumps is
essential for the performance of the W -cycle iteration based on piece-wise con-
stant functions. In Table 5 we present results for test problem 2 with properly

Table 4. W -cycle based on piece-wise constant coarse spaces for the SIPG with
linear elements and stabilization factor κE that does not depend on the jumps of a

Test Problem 2 Level 1 Level 2 Level 3 Level 4

DOF of SIPG 1 344 10 752 86 016 688 128

precond. DOF - piecewise constant 336 2 688 21 504 172 032

ǫ = 1, W -cycle 22/0.4151 27/0.4940 29/0.5224 29/0.5297

ǫ = 0.1, W -cycle 38/0.6106 72/0.7706 85/0.8027 91/0.8160

ǫ = 0.01, W -cycle 48/0.6804 157/0.8869 210/0.9156 238/0.9255

scaled stabilization parameter: κE = κ {{a}}. We tested the following precon-
ditioners: V -cycle and variable V -cycle based on continuous coarse spaces and
W -cycle based on piece-wise constant coarse spaces. Once again one can see
that V -cycle and variable V -cycle based on continuous coarse spaces perform
almost identically. Note that the iteration counts are slightly larger than those
of the case κE = κ‖a‖L∞ (cf. Table 3) but they are insensitive to large jumps.
In the case of piece-wise constant coarse spaces (W -cycle) the advantage of
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the weighted stabilization is evident – the numerical experiments show that
the number of PCG iterations is essentially independent of the jumps.

Table 5. Numerical results for Test Problem 2: SIPG with linear elements and
stabilization parameter κE = κ {{a}}.

Test Problem 2 Level 1 Level 2 Level 3 Level 4 Level 5

DOF of SIPG 1 344 10 752 86 016 688 128 5 505 024

precond. DOF - continuous 117 665 4 401 31 841 241 857

ǫ = 1, V -cycle 15/0.2750 16/0.2946 15/0.2908 15/0.2838 15/0.2766

ǫ = 0.1, V -cycle 16/0.3161 20/0.3812 21/0.4105 22/0.4187 22/0.4196

ǫ = 0.01, V -cycle 20/0.3800 24/0.4539 29/0.5228 31/0.5518 33/0.5687

ǫ = 0.001, V -cycle 19/0.3782 24/0.4603 30/0.5377 33/0.5674 36/0.5957

ǫ = 10−4, V -cycle 18/0.3546 24/0.4535 30/0.5312 32/0.5622 34/0.5753

ǫ = 10−5, V -cycle 18/0.3411 23/0.4488 28/0.5100 30/0.5405 32/0.5622

ǫ = 10−6, V -cycle 17/0.3279 23/0.4416 26/0.4911 29/0.5298 30/0.5375

ǫ = 1, var. V -cycle 15/0.2738 15/0.2900 15/0.2850 15/0.2759 14/0.2628

ǫ = 0.1, var. V -cycle 16/0.3157 20/0.3782 21/0.4038 21/0.4107 21/0.4056

ǫ = 0.01, var. V -cycle 20/0.3796 24/0.4508 29/0.5170 31/0.5448 32/0.5559

ǫ = 0.001, var. V -cycle 19/0.3779 24/0.4574 30/0.5329 33/0.5612 35/0.5886

precond. DOF - p.w. constant 336 2 688 21 504 172 032 1 376 256

ǫ = 1, W -cycle 22/0.4151 27/0.4940 29/0.5224 29/0.5297 29/0.5251

ǫ = 0.1, W -cycle 23/0.4400 28/0.5057 29/0.5284 30/0.5357 30/0.5343

ǫ = 0.01, W -cycle 22/0.4300 28/0.5012 30/0.5321 30/0.5385 31/0.5420

ǫ = 0.001, W -cycle 23/0.4410 28/0.5001 30/0.5332 30/0.5403 31/0.5438

ǫ = 10−4, W -cycle 22/0.4302 27/0.4980 30/0.5333 30/0.5405 31/0.5442

ǫ = 10−5, W -cycle 22/0.4209 26/0.4880 30/0.5333 30/0.5405 31/0.5442

ǫ = 10−6, W -cycle 21/0.4112 25/0.4730 30/0.5333 30/0.5405 31/0.5442

Table 6. Numerical results for Test Problem 3 for V -cycle and W -cycle for the
SIPG with linear elements.

Test Problem 3 Level 1 Level 2 Level 3 Level 4

precond. DOF of SIPG 24 032 192 256 1 538 048 12 304 384

precond. DOF of cont. FE 1 445 9 693 70 633 538 513
V -cycle 18/0.3530 18/0.3559 18/0.3529 19/0.3785

precond. DOF p.w. constants 6 008 48 064 384 512 3 076 096
W -cycle 35/0.5907 40/0.6307 45/0.6578 48/0.6788

Finally, in Table 6 we present the results iteration for V -cycle and W -cycle
preconditioners for test Problem 3. The mesh of this example has a number
of finite elements with high aspect ratio. The computations show that the
preconditioner based on piecewise constant functions is slightly more sensitive
with respect to the aspect ratio.
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