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1 Introduction

It is necessary to set a computational domain appropriately for the numerical sim-
ulation of wave propagation phenomena in unbounded region. There are several
approaches for this problem. In 1994, J.-P. Bérenger introduced the technique of
Perfectly Matched Layer (PML). It is said that PML technique gives the best per-
formance for Finite Difference Time Domain (FDTD) method in unbounded region.
Some researchers expanded this idea into the linearized Euler equation and acoustic
wave equation. In this paper, we consider some mathematical and numerical prob-
lem of PML technique, and propose a new discretization scheme that is better than
the original scheme.

2 PML Method

2.1 Formulation of PML

The Maxwell equation is written as:

∂E

∂t
= −σ

ǫ
E +

1

ǫ
∇×H,

∂H

∂t
= − 1

µ
∇×E. (1)

where, E is electric field, H is magnetic field, and ǫ, µ and σ are permittivity, mag-
netic permeability and electrical conductivity, respectively.

To treat the problem in unbounded region, we introduce PML technique which
surrounds interior region by an absorption medium introduced in [1]. In the PML
region, the electromagnetic wave propagates without reflection and decreases ampli-
tude exponentially, and there is no reflection on the boundary between the interior
and PML regions. The solution in interior region is not polluted. This behavior is re-
alized by introducing dissipation term into the Maxwell equation (1), and imposing
the impedance matching condition σ/ǫ0 = σ∗/µ0:

∂E

∂t
= − σ

ǫ0
E +

1

ǫ0
∇×H,

∂H

∂t
= −σ

∗

µ0
H− 1

µ0
∇×E, (2)

where, σ∗ is magnetic conductivity.
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2.2 Exact Solution in PML Region

In this section, we investigate some properties of PML technique. First, we consider
one dimensional continuous problem. In case that the solutions of (2) depend only
on t and x, the equation is rewritten as:

ǫ0
∂Ey
∂t

+ σEy = −∂Hz
∂x

, µ0
∂Hz
∂t

+ σ∗Hz = −∂Ey
∂x

. (3)

We take a unit such that ǫ0 = µ0 = 1, then the impedance matching condition
becomes σ = σ∗. Also, we put Ey = u and Hz = v, then (3) becomes the wave
equation for u and v:

∂u

∂t
+ σu = −∂v

∂x
,

∂v

∂t
+ σv = −∂u

∂x
. (4)

The exact solutions of (4) with initial values u(0, x) and v(0, x) at t = 0 are given
as:

u(t, x) =
1

2

(
e−

∫ x
0 σ(s)dsf(x− t) + e

∫ x
0 σ(s)dsg(x+ t)

)
,

v(t, x) =
1

2

(
e−

∫ x
0 σ(s)dsf(x− t)− e

∫ x
0 σ(s)dsg(x+ t)

)
,

where,

f(x) = e
∫ x
0 σ(s)ds(u(0, x) + v(0, x)),

g(x) = e−
∫ x
0 σ(s)ds(u(0, x)− v(0, x)).

3 FDTD Method and PML

3.1 Discretization of Dissipation Term in FDTD Method

In 1966, K.S. Yee [2] introduced FDTD method to treat electromagnetic wave prob-
lem. In this section, we consider a discretization scheme for (4). We set ∆t = ∆x ≡ τ
and σs ≡ σ(s∆x), s = m orm+ 1/2, and make use of the approximation:

σ(s∆x)u(s∆x) ≈ σs 1

2
(uns+ 1

2
+ uns− 1

2
).

Then, the difference approximation of (4) becomes

un+1
m = amu

n
m − bm(v

n+ 1
2

m+ 1
2

− vn+ 1
2

m− 1
2

), (5)

v
n+ 1

2

m+ 1
2

= am+ 1
2
u
n− 1

2

m+ 1
2

− bm+ 1
2
(vnm+1 − vnm), (6)

with

as =
1− τ

2
σs

1 + τ
2
σs
, bs =

1

1 + τ
2
σs
, s = m orm+

1

2
. (7)

We call (5) - (7) a plain scheme.
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3.2 Artificial Reflection Caused by Discretization

In this section, we consider the artificial reflection caused by discretization. We set
σ = 0 in x ≤ 0 and σ > 0 in x > 0. Then the solution given as:

{unm, v
n− 1

2

m− 1
2

}, unm = δ0,n−m, v
n− 1

2

m− 1
2

= δ0,n−m

which propagates towards the positive direction of x. When t = 0 (n = 0), the
solution is one at x= 0 which is boundary between interior and PML regions and
zero elsewhere. When n=1/2, we have from (6):

v
1
2

m+ 1
2

=

{
b1/2 : m = 0,
0 : otherwise.

When n = 1, we have from (5):

u1
m =




a0 − b0b1/2 : m = 0,
b1b1/2 : m = 1,
0 : otherwise.

Hence, u1
0 propagates towards the negative direction of x. We can express u1

0 con-
cretely

u1
0 = a0 − b0b1/2

=
1− τσ0

2

1 + τσ0
2

− 1

1 + τσ0
2

1

1 +
τσ1/2

2

=

τσ1/2

2

1 +
τσ1/2

2

.

Then, if σ > 0, an artificial reflection occurs. Therefore, when we set non-trivial
PML, an artificial reflection occurs inevitably. We assume that σ(x) can be expanded
in the Tayler series in [0,+∞) as:

σ(x) = σ0 +
N∑

k=1

1

k!

dk

dxk
σ(0)xk +O(xN+1).

Then, the artificial reflection coefficient R is given as:

R = σoτ +
σ′(0)

2
τ2 +O(τ3).

In particular, the artificial reflection is almost proportional to the product of jump of
σ and τ . In case the jump of σ is zero, it is proportional to the product of derivative
of σ and τ2 by neglecting O(τ3) term. Furthermore, if σ is differentiable at the
boundary, the artificial reflection is at most order τ3.

3.3 A New Scheme with Lower Reflection

From the analysis in the previous section, even if the dissipation is constant, an
artificial reflection occurs in PML region. To eliminate this spurious reflection at
PML region where σ is constant, we propose the new scheme. The new scheme is
defined as:
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un+1
m = anewm unm − bnewm (v

n+ 1
2

m+ 1
2

− vn+ 1
2

m− 1
2

), (8)

v
n+ 1

2

m+ 1
2

= anewm+ 1
2
u
n− 1

2

m+ 1
2

− bnewm+ 1
2
(vnm+1 − vnm), (9)

with

anews = e−τσs , bnews = e−τσs/2, s = m orm+
1

2
. (10)

σs is constant with respect s, we can show easily that as − bsbs+1/2 = 0. This
concludes that there is no spurious reflection in PML region where σ is constant.

4 Some Numerical Examples

4.1 Comparison among Various Schemes in 1D Case

In this section, we give some numerical examples to confirm our analysis. In the
first example, we compare the spurious reflections among various schemes in 1D
case. The whole region [0, 2] is set to be PML with constant dissipation: σ(x) ≡
log 10 = 2.302585 · · · , x ∈ [0, 2]. We set the initial values u and v to be

u(0, x) =

{
cos2

(
20π(x− 1.0)

)
, 0.95 < x < 1.05,

0, otherwise,
v(0, x) ≡ 0.

We assume the homogeneous Dirichlet condition on both ends of [0, 2]. In this case,

the analytical reflection coefficient for this PML is e−2
∫ 2
0 σ(x)dx = 10−4. Namely the

incident wave from the left end has a primal reflection with the magnitude 10−4.
Figure 1 - 3 show the comparison of reflection waves computed by Bérenger’s

original scheme, plain scheme and our new scheme. We take a common mesh size
τ = 1/160 for space and time. The horizontal coordinate represents the time t
and the vertical coordinate shows the value of u(t, x) at time t = 0.0, 0.2, 0.4, 0.6
respectively. Plain scheme and Bérenger’s scheme give spurious reflective trail behind
the wave front whereas our new scheme is pollution free. The magnitude of the
spurious waves is proportional to σ2τ2, it could be controlled to be small enough in
practical applications.
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Fig. 1. The initial shape of u(0, x).

In the second example, we compare the reflection waves from PML for three
different shapes of function σ(x) in our new scheme. Figure 4 shows the shapes of
function σ(x). The vacuum region is [0.0, 1.0] and PML one is [1.0, 1.2]. In the first
case, σ(x) increases discontinuously at the boundary between interior and PML
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Fig. 2. Comparison of reflection waves at t = 0.4 for Bérenger (left), plain (middle)
and new scheme (right).
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Fig. 3. Comparison of reflection waves at t = 0.8 for Bérenger (left), plain (middle)
and new scheme (right).

regions with magnitude σ0 = 10 log 10 = 23.025 · · · . In the second case, σ(x) in-
creases linearly on [1.0, 1.1]. In the last case, σ(x) increases as the 3rd order spline
on [1.0, 1.1]. In all cases, the integrals of σ(x) on [1.0, 1.2] are the same. Next, we
measure the reflection at x = 0.5. In figure 5 - 6, the horizontal coordinate is time
and the vertical one is the value of u(t, 0.5) at the observation point. The wave form
during the time between 1.9-2.0 propagate from the interior vacuum region to the
PML region, and reflects back at an edge of a PML region, and comes back to the
interior region again. We call this wave the real reflection wave. The wave in the
neighborhood of t = 1.6 is spurious one. In the first, the second and the last cases,
the spurious waves are proportional to τ, τ2, τ4 respectively.
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Fig. 4. Shapes of function σ(x) for three different cases: discontinuous (left), linear
(middle) and 3rd order spline (right).
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Fig. 5. Comparison of reflection wave to depend on three different shapes of σ(x):
τ = 1/160.
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Fig. 6. Comparison of reflection wave to depend on three different shapes of σ(x):
τ = 1/320.

4.2 Application to Two-Dimensional Electromagnetic Problem

We extend our scheme to the two-dimensional Maxwell equation for TE mode, and
give some numerical examples. The concrete algorithm satisfies the CFL stability
condition and ∆x = ∆y = ∆l = 1/160 and ∆t = ∆l/

√
2. Bérenger’s scheme is

Hzx(i, j) = e−σx(i)∆tHzx(i, j)− 1− e−σ(i)∆t

σx(i)∆l
{Ey(i+ 1, j)− Eny (i, j)},

and our new scheme is

Hzx(i, j) = e−σx(i)∆tHzx(i, j)− ∆t

∆l
e−σx(i) ∆t

2 {Ey(i+ 1, j)− Eny (i, j)}.

We set the computational domain to be a square [−0.7, 0.7] × [−0.7, 0.7] and the
vacuum region is a square [−0.5, 0.5] × [−0.5, 0.5]. The shapes of the dissipation
functions σ(x) and σ(y) are the 3rd order spline like in the 1D case. The initial
value is set to be

Hz(0, x, y) = e−(x−2+y2)/16, Ex(0, x, y) = 0, Ey(0, x, y)) = 0.

Figure 7 - 9 show the time history of the wave. The horizontal coordinate is x
and the vertical one is y, and the value of u(t, x, y) is represented by gradation of
brightness. The results show good numerical performance with little reflection from
the PML region.
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Fig. 7. Two-dimensional results, t = 0.0 (left), t = 0.2 (right).
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Fig. 8. Two-dimensional results, t = 0.4 (left), t = 0.6 (right).
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Fig. 9. Two-dimensional results, t = 0.8 (left), t = 1.0 (right).

5 Conclusion and Future Works

We explained the origin of the artificial reflection based on the mathematical analysis
for 1D problem, and proposed a new scheme for which the artificial reflection does
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not occur in the region where σ(x) is constant. By some numerical examples, we
confirmed our mathematical analysis and effectiveness of our new scheme. Moreover,
we extended the new scheme to 2D problem and got good results. As the result of
these numerical performance, we conclude that the new PML is efficient in 1D and
2D computation of wave propagation problems.

The theoretical analysis for 2D problem and the proposal of stable 3D numerical
method are future works. We will then proceed to the application in the real world
problem such as the transient phenomena in various wave propagation problems
including the voice generation simulation and the electromagnetic wave simulation
in MRI problem.
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