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Kunibert Siebert2, and Achim Wixforth3

1 University of Houston, Department of Mathematics
(http://www.math.uh.edu/~rohop/)

2 University of Augsburg, Institute for Mathematics
(http://scicomp.math.uni-augsburg.de)

3 University of Augsburg, Institute of Physics
(http://www.physik.uni-augsburg.de/exp1)

Summary. Biochips, of the microarray type, are fast becoming the default tool for
combinatorial chemical and biological analysis in environmental and medical stud-
ies. Programmable biochips are miniaturized biochemical labs that are physically
and/or electronically controllable. The technology combines digital photolithogra-
phy, microfluidics and chemistry. The precise positioning of the samples (e.g., DNA
solutes or proteins) on the surface of the chip in pico liter to nano liter volumes can
be done either by means of external forces (active devices) or by specific geomet-
ric patterns (passive devices). The active devices which will be considered here are
nano liter fluidic biochips where the core of the technology are nano pumps featuring
surface acoustic waves generated by electric pulses of high frequency. These waves
propagate like a miniaturized earthquake, enter the fluid filled channels on top of
the chip and cause an acoustic streaming in the fluid which provides the transport of
the samples. The mathematical model represents a multiphysics problem consisting
of the piezoelectric equations coupled with multiscale compressible Navier-Stokes
equations that have to be treated by an appropriate homogenization approach. We
discuss the modeling approach and present algorithmic tools for numerical simula-
tions as well as visualizations of simulation results.

1 Introduction

Microfluidic biochips and microarrays are used in pharmaceutical, medical and foren-
sic applications as well as in academic research and development for high throughput
screening, genotyping and sequencing by hybridization in genomics, protein profiling
in proteomics, and cytometry in cell analysis (see [7]). Traditional technologies such
as fluorescent dyes, radioactive markers, or nanoscale gold-beads only allow a rela-
tively small number of DNA probes per assay, and they do not provide information
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about the kinetics of the processes. With the need for better sensitivity, flexibil-
ity, cost-effectiveness and a significant speed-up of the hybridization, the current
technological trend is to integrate the microfluidics on the chips itself. A new type
of nanotechnological devices are Surface Acoustic Wave (SAW) driven microfluidic
biochips (cf. [4, 9]).

Fig. 1. Microfluidic biochip with network of microchannels (left), and sharp jet
created by surface acoustic waves (right)

The experimental technique is based on piezoelectrically actuated Surface Acous-
tic Waves (SAW) on the surface of a chip which transport the droplet contain-
ing probe along a lithographically produced network of microchannels to marker
molecules placed at prespecified surface locations (cf. Fig. 1 (left)). These microflu-
idic biochips allow the in-situ investigation of the dynamics of hybridization pro-
cesses with extremely high time resolution.
The SAWs are excited by interdigital transducers and are diffracted into the device
where they propagate through the base and enter the fluid filled microchannel cre-
ating a sharp jet on a time-scale of nanoseconds (cf. Fig. 1 (right)). The acoustic
waves undergo a significant damping along the microchannel resulting in an acous-
tic streaming on a time-scale of milliseconds. The induced fluid flow transports the
probes to reservoirs within the network where a chemical analysis is performed.

2 Modeling of SAW Driven Microfluidic Biochips

Mathematical models for SAW biochips are based on the linearized equations of
piezoelectricity in Q1 := (0, T1)×Ω1
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with appropriate initial conditions at t = 0 and boundary conditions on Γ1 := ∂Ω1.
Here, ρ1 and u = (u1, u2, u3)T denote the density of the piezoelectric material and
the mechanical displacement vector. Moreover, ǫ = (ǫij) stands for the permittivity
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tensor and Φ for the electric potential. The tensors c = (cijkl) and e = (eikl) refer
to the forth order elasticity tensor and third-order piezoelectric tensor, respectively.
The modeling of the micro-fluidic flow is based on the compressible Navier-Stokes
equations in Q2 := (0, T2)×Ω2
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with suitable initial conditions at t = 0 (see, e.g., [1, 2]). In the model, com-
pressible and non-linear effects are the driving force of the resulting flow. Here,
ρ2,v = (v1, v2, v3)T and p are the density of the fluid, the velocity, and the pres-
sure. η and ζ refer to the shear and the bulk viscosity. The boundary conditions
include the time derivative ∂u/∂t of the displacement of the walls Γ2 = ∂Ω2 of
the microchannels caused by the surface acoustic waves. Therefore, the coupling
of the piezoelectric and the Navier-Stokes equations is only in one direction. No
back-coupling of the fluid onto the SAWs is considered. It has to be emphasized
that the induced fluid flow involves extremely different time scales. The damping
of the sharp jets created by the SAWs represents a process with a time scale of
nanoseconds, whereas the resulting acoustic streaming reaches an equilibrium on a
time scale of milliseconds.
SAWs are usually excited by interdigital transducers located at Γ1,D ⊂ Γ1 operating
at a frequency f ≈ 100 MHz with wavelength λ ≈ 40 µm. The time-harmonic ansatz
leads to the saddle point problem:
Find (u, Φ) ∈ V × W , where V ⊂ H1(Ω1)3,W ⊂ H1(Ω1), such that for all
(w, Ψ) ∈ V ×W
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Here, (εij(u)) stands for the linearized strain tensor and ω = 2πf . The elastic

and electric Neumann boundary data are supposed to satisfy σn ∈ H−
1
2 (Γσ)2 and

Dn ∈ H−
1
2 (ΓD) with < ·, · > in the above system denoting the respective dual

products. Then, the following results holds true (cf. [3]):

Theorem 1. For the above saddle point problem, the Fredholm alternative holds
true. In particular, if ω2 is not an eigenvalue of the associated eigenvalue problem,
there exists a unique solution (u, Φ) ∈ V ×W .

In order to cope with the two time-scales character of the fluid flow in the
microchannels (penetration of the SAWs within nanoseconds and induced acoustic
streaming within milliseconds), we perform a separation of the time-scales by ho-
mogenization. In particular, we consider an expansion of the velocity v in a scale
parameter ε > 0 representing the max́ımal displacement of the walls
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v = v0 + ε v′ + ε2 v′′ + O(ε3)

and analogous expansions of the pressure p and the density ρ2. We set v1 :=
εv′,v2 := ε2v′′ and define pi, ρ2,i, 1 ≤ i ≤ 2, analogously. Collecting all terms
of order O(ε) results in the linear system
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where c0 represents the small signal sound speed in the fluid. The system describes
the propagation of damped acoustic waves.
Collecting all terms of order O(ε2) and performing the time-averaging 〈w〉 :=

T−1
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w dt, where T := 2π/ω, we arrive at the Stokes system in Ω2
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The Stokes system describes the stationary flow pattern, called acoustic streaming,
resulting after the relaxation of the high frequency surface acoustic waves.
As far as analytical results for the Navier-Stokes equations (3a)-(3c) are concerned,
one can show existence and uniqueness of a weak periodic solution assuming the
forcing term to be a periodic function. Moreover, under some extra regularity as-
sumption it can be shown that the periodically extended solution converges to an
oscillating equilibrium state (see [5]).

Theorem 2. Assume that the forcing term is a periodic function of period T . Then,
the linear Navier-Stokes equations (3a)-(3c) have a unique weak periodic solution
(vper, pper) ∈ H1((0, T );H−1(Ω)3 × L2

0(Ω)).
Moreover, if (ṽ, p̃) resp. (ṽper, p̃per) are extensions of the solution resp. the periodic
solution of the Navier-Stokes equation with periodic forcing term to arbitrary large
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3 Simulation of the SAWs and the Microfluidic Flows

The time-harmonic acoustic problem is solved in the frequency domain by using P1

conforming finite elements with respect to a hierarchy of simplicial triangulations.
This leads to an algebraic saddle point problem
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. (5)
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For the numerical solution of (5) we use multilevel preconditioned CG for the asso-
ciated Schur complementbased on a block-diagonal preconditioner

P−1 =

(
Ã−1
ω 0

0 C̃−1

)
(6)

with BPX- or hierarchical-type preconditioners for the stiffness matrices associated
with the mechanical displacement and electric potential, respectively (see [3] for
details).
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Fig. 2. Performance of the multilevel preconditioned CG compared with standard
CG in 2D (left) and 3D (right)

Fig. 2 displays the performance of the multilevel preconditioners compared to the
standard single-grid iterative solver both in 2D (on the left) and in 3D (on the right).
For the BPX-preconditioner we observe the expected asymptotic independence on
the refinement level (cf., e.g., [6]).

The Navier Stokes equations (3a)-(3c) with a periodic excitation on the boundary
Γ2 are discretized in time by the Θ-scheme (cf., e.g., [8]), until a specific condition
for periodicity of the pressure is met. The discretization in space is taken care of by
Taylor-Hood elements with respect to a hierarchy of simplicial triangulations. On
the other hand, for the discretization of the time-averaged Stokes system we use the
same techniques as for the time-harmonic acoustic problem (see [5] for details).

4 Numerical Simulation Results

The following simulation results are based on 2D computations that have been car-
ried out for LiNbO3 as the piezoelectric material and assuming the fluid in the
microchannels to be water at 20◦C. For a precise specification of the geometrical
and material data we refer to [3] and [5]. Fig. 3 shows the amplitudes of the electric
potential at an operating frequency of 100 MHz (left) and the polarized Rayleigh
waves by means of the displacement vectors (right). The amplitudes of the displace-
ment waves are in the region of nanometers. The SAWs are strictly confined to the
surface of the substrate. Their penetration depth into the piezoelectric material is
in the range of one wavelength. Rayleigh surface waves characteristically show an
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elliptical displacement, i.e., the displacements in the x1- and x2-direction are 90o out
of phase with one another. Additionally, the amplitude of the surface displacement
in the x2-direction is larger than that along the SAW propagation axis x1.

Fig. 3. Electric potential wave (100 MHz) (left) and mechanical displacement vec-
tors (right)

Fig. 4 (left) displays the effective force creating the sharp jet in the fluid (cf. Fig.
1 (right)) which can be easily computed by means of F := ρ2,0〈(v1·∇)v1+v1(∇·v1)〉,
where the brackets stand for the time average removing the fast oscillations of the
sound wave. Fig. 4 (right) contains a visualization of the associated velocity field.

Fig. 4. Effective force and associated velocity field

Fig. 5 shows the strong damping of the acoustic waves in the fluid where exci-
tation occurs through an SAW running from left to right along the lower edge at a
frequency of 100 MHz.
We have performed a model validation by a comparison of experimental data with
numerical simulation results. Fig. 6 (left) displays the measured streaming pattern
visualized by a fluorescence video microscope for an experimental layout consisting
of a typical biochip with an IDT placed on top of a standard YXl 128ô substrate (the
IDT is visible at the bottom right of Fig. 6 (left)). Fig. 6 (right) shows the result of a
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Fig. 5. Strong damping of the SAWs after penetration into the fluid

Fig. 6. Model validation: experimental measurements (left) and numerical simula-
tion results (right)

simulation run based on the data of the experimental setting. A similar qualitative
behavior can be observed. More importantly, for the resulting acoustic streaming
the simulation results are quantitatively in good agreement with the experimental
data.
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