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Summary. Overlap is essential for the classical Schwarz method to be conver-
gent when solving elliptic problems. Over the last decade, it was however observed
that when solving systems of hyperbolic partial differential equations, the classical
Schwarz method can be convergent even without overlap. We show that the classical
Schwarz method without overlap applied to the Cauchy-Riemann equations which
represent the discretization in time of such a system, is equivalent to an optimized
Schwarz method for a related elliptic problem, and thus must be convergent, since
optimized Schwarz methods are well known to be convergent without overlap.

1 Introduction

The classical Schwarz method applied to scaler partial differential equations has been
widely studied, as one can see from the many contributions in the proceedings of the
international conferences on domain decomposition methods. Over the last decade,
optimized variants of this method have been developed, which use absorbing condi-
tions as transmission conditions at the interfaces between subdomains, and converge
significantly faster than the classical Schwarz methods, see [7] and references therein.
Less is known about the behavior of the classical Schwarz method applied to systems
of partial differential equations; for the Euler equations, see [8, 9, 2] and [4, 5].

We show in this paper that the classical Schwarz method, which uses character-
istic Dirichlet transmission conditions between subdomains, applied to the Cauchy
Riemann equations is equivalent to an optimized Schwarz method applied to a well
known equivalent elliptic problem. This explains why the classical Schwarz method
in that case can be convergent even without overlap, and it allows us to develop
more effective Schwarz methods for systems of partial differential equations. The
extension of this idea to the more realistic case of Maxwell’s equations, both in the
time-harmonic and time-discretized case, can be found in [3].
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2 Cauchy-Riemann Equations and Scalar Equivalent

To analyze the relationship between Schwarz methods for scalar partial differential
equations (PDEs) and systems of PDEs, we use the Cauchy-Riemann equations

Lu :=
√
ηu +

[
−1 0
0 1

]
∂xu +

[
0 1
1 0

]
∂yu = f :=

(
f
g

)
, u :=

(
u
v

)
, (1)

on Ω = [0, 1]× R, with boundary conditions

v(0, y) = r(y), u(1, y) = s(y), y ∈ R. (2)

The equations (1) can be interpreted as the time discretization of the hyperbolic
system

∂tu +

[
−1 0
0 1

]
∂xu +

[
0 1
1 0

]
∂yu = 0, on Ω = [0, 1]× R× R+.

At each time step, the resolution of equations of the type (1) is needed. Imposing
the unknowns entering along the characteristics at the boundaries of the domain Ω
like in (2) leads to a well-posed problem.

The scalar partial differential equation

L̃ũ ≡ ηũ−∆ũ = f̃ , in Ω, (3)

with the boundary conditions

(∂x −
√
η)ũ(0, y) = r̃(y), ũ(1, y) = s̃(y), y ∈ R (4)

is very much related to the Cauchy-Riemann equations:

Proposition 1. If f̃ = (
√
η + ∂x)f − ∂yg, r̃ = ∂yr − f(0, ·) and s̃ = s, then the

velocity component u of the Cauchy-Riemann equations (1) with boundary conditions
(2) coincides with the solution ũ of the elliptic problem (3) with boundary conditions
(4) for all x, y ∈ Ω.

A similar elliptic PDE can also be derived for v, but we will not need it for what
follows.

3 Classical Schwarz Algorithm

We decompose the domain Ω into two overlapping or non-overlapping subdomains
Ω1 = (0, b)× R and Ω2 = (a, 1)× R, and we denote the overlap by L := b− a ≥ 0.
A classical Schwarz algorithm for the Cauchy-Riemann equations (1) on these two
subdomains is then defined by

Lun1 = f , in Ω1, Lun2 = f , in Ω2,
vn1 (0, y) = r(y), y ∈ R, un2 (1, y) = s(y), y ∈ R,
un1 (b, y) = un−1

2 (b, y), y ∈ R, vn2 (a, y) = vn−1
1 (a, y), y ∈ R,

(5)

where unj = (unj , v
n
j ) denotes the n-th iterate of u in domain Ωj , j = 1, 2. Note that

in this classical form of the Schwarz algorithm for the system of PDEs, we respected
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in the transmission conditions the information exchange along the characteristic
directions, which is the most natural approach to follow when applying domain
decomposition methods to hyperbolic problems, see for example [1, 9].

From the relation between the Cauchy-Riemann equations (1) and the associated
elliptic problem (3) stated in Proposition 1, the related Schwarz algorithm for the
elliptic problem is

L̃ũn1 = f̃ , in Ω1 L̃ũn2 = f̃ , in Ω2

Bũn1 (0, y) = r̃(y), y ∈ R, ũn2 (1, y) = s̃(y), y ∈ R,
ũn1 (b, y) = ũn−1

2 (b, y), y ∈ R, Bũn2 (a, y) = Bũn−1
1 (a, y), y ∈ R

(6)

where B = (∂x −√η).

Theorem 1. If algorithm (6) is started with the initial guess ũ0
1 = u0

1 and ũ0
2 = u0

2,
then the iterates of algorithm (6) and algorithm (5) coincide, unl (x, y) = ũnl (x, y) for
all (x, y) ∈ Ωl, l = 1, 2 and n ≥ 1.

Proof. The proof is by induction. Proposition 1 shows the result for n = 1. Assume
then that the result is true at iteration n − 1. Let u1,n, v1,n, u2,n, and v2,n be the
iterates of the Schwarz algorithm applied to the Cauchy-Riemann equations. We
then have, on the one hand

u1,n(b, y) = u2,n−1(b, y) = ũ2,n−1(b, y) = ũ1,n(b, y).

On the other hand, differentiating the interface condition on v in (5) with respect
to y and using the first Cauchy-Riemann equation, we get

(∂x −
√
η)u2,n − f = ∂yv

2,n = ∂yu
1,n−1 = (∂x −

√
η)u1,n−1 − f.

When evaluating the above expression at x = a, the f terms cancel, and we obtain

(∂x −
√
η)u2,n = (∂x −

√
η)u1,n−1 = (∂x −

√
η)ũ1,n−1 = (∂x −

√
η)ũ2,n.

Since the boundary conditions at (0, y) and (1, y) stay the same, the result follows
from Proposition 1.

This theorem shows why the classical Schwarz algorithm (5) with characteristic
Dirichlet transmission conditions for the Cauchy Riemann equations can converge
even without overlap: it is equivalent to an optimized Schwarz method for a related
elliptic PDE, and optimized Schwarz methods are also convergent without overlap,
see [7].

We analyze now the convergence rate of Algorithm (5) when the domain is the
entire plane, Ω = R2, and the subdomains are Ω1 = (−∞, L)×R and Ω2 = (0,∞)×
R, L ≥ 0. Let enl (x, y) = (dnl (x, y), enl (x, y))t := u(x, y) − unl (x, y), l = 1, 2 denote
the error at iteration n. Then the enl satisfy the homogeneous version of Algorithm
(5), which after a Fourier transform F in y with parameter k, ênl := F(enl ), gives

L̂ên1 = 0, in Ω1, L̂ên2 = 0, in Ω2,

ên1 (−∞, k) = 0, k ∈ R, d̂n2 (∞, k) = 0, k ∈ R,

d̂n1 (L, k) = d̂n−1
2 (L, k), k ∈ R, ên2 (0, k) = ên−1

1 (0, k), k ∈ R,

(7)

and L̂ denotes the action of the operator L after the Fourier transform in y, i.e.

L̂û := F(Lu) =
√
ηû +

[
−1 0
0 1

]
∂xû +

[
0 1
1 0

]
ikû.
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Theorem 2. If the initial error on the interfaces contains the Fourier components
ê0
1(L, k) and ê0

2(0, k), k ∈ R, then for any overlap L ≥ 0, algorithm (5) converges
for all k,

|ê2n
1 (L, k)|+ |ê2n

2 (0, k)| ≤ (ρ(η, L, k))2
(
|ê0

1(L, k)|+ |ê0
2(0, k)|

)
, (8)

and the convergence factor is given by

ρ(η, L, k) =

√√√√
√
η + k2 −√η√
η + k2 +

√
η
e−L
√
η+k2 < 1, ∀k ∈ R. (9)

Proof. Solving (7) at iteration n+ 1, we obtain

ê1,n+1 =αn+1eλ(x−L)

(√
η + k2+

√
η

−ik

)
, ê2,n+1 =βn+1e−λx

( −ik√
η + k2+

√
η

)
, (10)

where λ =
√
η + k2, and αn+1 and βn+1 are determined by the interface conditions

to be

αn+1 = βn
−ik√

η + k2 +
√
η
e−
√
η+k2L, βn+1 = αn

−ik√
η + k2 +

√
η
e−
√
η+k2L.

Performing a double step, this leads to the square of the convergence factor

ρ(η, L, k)2 :=
αn+1

αn−1
=
βn+1

βn−1
= −

√
η + k2 −√η√
η + k2 +

√
η
e−2L

√
η+k2 ,

which implies the result by induction on n.

4 Optimized Schwarz Algorithm

Algorithm (6) is a rather unusual optimized Schwarz algorithm for the elliptic prob-
lem (3), since it still uses Dirichlet transmission conditions at one of the interfaces.
The guiding principle behind optimized Schwarz methods is to use absorbing trans-
mission conditions, i.e. approximations of transparent boundary conditions at the
interfaces between subdomains. The Robin transmission condition on one of the in-
terfaces in (6) can be interpreted as a zeroth order low frequency approximation of a
transparent condition, see [6]. In order to find better transmission conditions for the
Cauchy-Riemann equations, we now derive their associated transparent boundary
conditions.

To this end, we consider the Cauchy-Riemann equations (1) on the domain
Ω = (0, 1) × R, with f = (f, g)T compactly supported in Ω, but with the new
boundary conditions

(v + S1u)(0, y) = 0, (u+ S2v)(1, y) = 0, y ∈ R, (11)

where the operators Sl, l = 1, 2 are general, pseudo-differential operators acting in
the y direction.
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Lemma 1. If the operators Sl, l = 1, 2, have the Fourier symbol

σl := F(Sl) =
ik

√
η +

√
η + k2

, l = 1, 2, (12)

then the solution of the Cauchy-Riemann equations (1) on the domain Ω = (0, 1)×R

with boundary conditions (11) coincides with the restriction to the domain Ω of the
solution of the Cauchy-Riemann equations (1) posed on R2.

Proof. It suffices to show that the difference between the solution of the global
problem and the solution of the restricted problem vanishes. This difference, denoted
by e, satisfies the homogeneous counterpart of (1) with boundary conditions (11),
and its Fourier transform is

ê(x, k) = αe
√
η+k2x

(√
η + k2 +

√
η

−ik

)
+ βe−

√
η+k2x

( −ik√
η + k2 +

√
η

)
. (13)

Now the first boundary condition in (11) implies β
√
η + k2 = 0, and hence β = 0,

and the second one implies α
√
η + k2e−

√
η+k2 = 0, which gives α = 0, and hence

ê ≡ 0.

Remark 1. The symbols (12) can be written in several mathematically equivalent
forms,

σl =
ik

√
η +

√
η + k2

=

√
η −

√
η + k2

ik
=

√√√√
√
η −

√
η + k2

√
η +

√
η + k2

. (14)

The first form contains a local and a non-local term in k, since multiplication with
ik corresponds to derivation in y, which is a local operation (as the application of
any polynomial in ik would be), whereas the term containing the square-root of k2 is
a non-local operation. The second form contains two non-local operations, since the
division by ik corresponds to an integration. This integration can however be passed
to the other variable in (11) by multiplication with ik. The last form contains only
non-local terms. These different forms motivate different local approximations of
the transparent boundary conditions, and thus lead to different optimized Schwarz
methods, as we will show in the sequel.

We now consider the associated elliptic equations (3) on the domain Ω = (0, 1)×R,
with f compactly supported in Ω, but with the new boundary conditions

(∂x − S̃1)u(0, y) = 0, (∂x + S̃2)u(1, y) = 0, y ∈ R, (15)

where the operators S̃l, l = 1, 2 are general, pseudo-differential operators acting in
the y direction.

Lemma 2. If the operators S̃l, l = 1, 2, have the Fourier symbol

σ̃l := F(S̃l) =
√
η + k2, l = 1, 2, (16)

then the solution of (3) on the domain Ω = (0, 1)×R with boundary conditions (15)
coincides with the restriction to Ω of the solution of (3) on R2.

Proof. The proof follows as in Lemma 1 using Fourier analysis.
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Proposition 2. The velocity component u of the solution of the Cauchy-Riemann
equations (1) with boundary conditions (11), (12) coincides with the solution ũ of the
elliptic problem (3) with boundary conditions (15), (16) for all x, y ∈ Ω = (0, 1)×R.

Proof. We have already seen in Proposition 1 that the equations inside the do-
main coincide. It therefore suffices to show that the boundary conditions are also
equivalent. By using the first Fourier transformed equation inside the domain, i.e.
ikv̂ = (∂x−√η)û, the boundary condition at x = 1, i.e. (

√
η +

√
η + k2)û+ikv̂ = 0,

becomes (∂x +
√
η + k2)û = 0, which is the transparent boundary condition for the

elliptic equation. The same argument applies to the other boundary condition: using
the first Fourier transformed equation, the boundary condition at x = 0 becomes
(
√
η +

√
η + k2)(∂x −√η)û − k2û = 0. Taking into account that k2 = (

√
η + k2 +√

η)(
√
η + k2−√η), we further obtain (

√
η + k2 +

√
η)(
√
η + k2−∂x)û = 0, which

is equivalent to the transparent boundary condition for the scalar equation at x = 0.

We generalize now the classical Schwarz algorithm (5) by changing the transmission
conditions at the interfaces,

Lun1 = 0, in Ω1,
un1 (L, y) + S1v

n
1 (L, y) = un−1

2 (L, y) + S1v
n−1
2 (L, y),

Lun2 = 0, in Ω2,
vn2 (0, y) + S2u

n
2 (0, y) = vn−1

1 (0, y) + S2u
n−1
1 (0, y).

(17)

Proceeding as in Theorem 2, the convergence factor for a double iteration is

ρopt(η, L, k, σ1, σ2) =

∣∣∣∣
−ik+σ1(

√
η+k2+

√
η)√

η+k2+
√
η−ikσ1

−ik+σ2(
√
η+k2+

√
η)√

η+k2+
√
η−ikσ2

e−2
√
η+k2L

∣∣∣∣
1
2

. (18)

A good choice of σl, l = 1, 2 is a choice that makes the convergence factor ρopt small
for all values of k, and from (18), we see that the choice (12) is optimal, since then
ρopt ≡ 0 for all k. But a good choice should also lead to transmission conditions
which are as easy and inexpensive to use as the classical characteristic Dirichlet
conditions. Guided by the equivalence with the scalar case, we will compare the
following cases:

Case 1: σ1 = σ2 = 0, the classical algorithm (5) with convergence factor (9).

Case 2: σ1 = ik√
η+p

, σ2 =
√
η−p
ik

, p > 0, a mixed case, where the first form of the

exact symbol in (14) is used to approximate σ1 and the second form is used to
approximate σ2. This corresponds to first order transmission conditions, since
ik corresponds to a derivative in y and the division by ik can be avoided by
multiplying the entire transmission condition by ik. The convergence factor is

ρ2(η, L, k, p) =

∣∣∣∣∣

(√
η + k2 − p√
η + k2 + p

)2

e−2
√
η+k2L

∣∣∣∣∣

1
2

, (19)

which is equivalent to the algorithm in the elliptic case with Robin transmission
conditions ∂x ± p, see [6].

Case 3: σ1 = σ2 = σ = ik√
η+p

, p > 0, where only the first form of the exact symbol

(14) has been used to approximate both σ1 and σ2. The resulting convergence
factor is
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ρ3(η, L, k, p) =

∣∣∣∣∣

√
η + k2 −√η√
η + k2 +

√
η

∣∣∣∣∣

1
2

ρ2(η, L, k, p) < ρ2(η, L, k, p), (20)

and thus the convergence factor is smaller than in Case 2 by the same factor
that was gained in Case 1 over the classical elliptic case.
Choosing the second form of the symbol (14) to approximate both σ1 and σ2

is not a good idea, since it inverts the additional low frequency factor, which is
less than one in (20).

Case 4: σ1 = ik√
η+p1

, σ2 =
√
η−p2
ik

, p1,2 > 0, a choice motivated by Remark 1, which

leads to the convergence factor

ρ4(η, L, k, p1, p2) =

∣∣∣∣∣

√
η + k2 − p1√
η + k2 + p1

·
√
η + k2 − p2√
η + k2 + p2

e−2
√
η+k2L

∣∣∣∣∣

1
2

. (21)

This corresponds to the two-sided Robin transmission conditions in the elliptic
case in [6], which are of the form ∂x − p1 for the first subdomain and ∂x + p2

for the second one.
Case 5: σ1 = ik√

η+p1
, σ2 = ik√

η+p2
, p1,2 > 0, which gives the even better convergence

factor

ρ5(η, L, k, p1, p2)=

∣∣∣∣∣

√
η + k2 −√η√
η + k2 +

√
η

∣∣∣∣∣

1
2

ρ4(η, L, k, p1, p2) < ρ4(η, L, k, p1, p2).

In the cases with parameters, the best choice for the parameters is in general the
one that minimizes the convergence factor for all k ∈ K, where K denotes the set of
relevant numerical frequencies, for example K = [kmin, kmax]. One therefore needs
to solve the min-max problems

min
p>0

max
k∈K

ρj(η, L, k, p), j = 2, 3, min
p1,p2>0

max
k∈K

ρj(η, L, k, p1, p2), j = 4, 5. (22)

In Case 2 and 4, the solution of the problem is already given in [6] for the equivalent
elliptic case, and can therefore directly be used for the Cauchy-Riemann equations.
The other cases are specific to the Cauchy-Riemann equations and an asymptotic
analysis similar to the one shown in [6] leads to the results given in Table 1, where
the estimate kmax = C

h
, C a positive constant, was used (a reasonable value would

be C = π).
One can clearly see in this table that there are much better transmission condi-

tions than the characteristic ones for the Cauchy-Riemann equations: for a Schwarz
algorithm with overlap of the order of the mesh parameter, L = h, the characteris-
tic transmission conditions lead to a convergence factor 1−O(

√
h), which depends

strongly on h, whereas with better transmission conditions, one can achieve the

convergence factor 1 − O(h
1
6 ), which now depends only very weakly on h, at the

same cost per iteration. Similar results also hold for the Schwarz algorithm without
overlap, as shown in Table 1.

5 Numerical Experiments

We now show numerical experiments for the Cauchy-Riemann equations solved on
the unit square Ω = (0, 1) × (0, 1). We decompose the unit square into two sub-
domains Ω1 = (0, b) × (0, 1) and Ω2 = (a, 1) × (0, 1), where 0 < a ≤ b < 1, and
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Table 1. Asymptotic convergence rate and optimal choice of the parameters in the
transmission conditions for the five variants of the optimized Schwarz method ap-
plied to the Cauchy-Riemann equations, when the overlap L or the mesh parameter
h is small, and the maximum numerical frequency is estimated by kmax = C

h
.

with overlap, L > 0 without overlap, L = 0

Case ρ parameters ρ parameters

1 1− 2η
1
4

√
L none 1−

√
η

C
h none

2 1−2
13
6 η

1
6L

1
3 p = 2

− 1
3 η

1
3

L
1
3

1− 4η
1
4
√
h√

C
p =

√
Cη

1
4√

h

3 1− 2
3
2 η

1
8L

1
4 p = η

1
4√
L

1− 2
4
3 η

1
6

C
1
3
h

1
3 p = 2

1
3 C

2
3 η

1
6

h
2
3

4 1−2
4
5 η

1
10L

1
5 p1=

η
1
5

2
2
5 L

3
5

, p2=
η

2
5

16
1
5 L

1
5

1−
√

2η
1
8

C
1
4
h

1
4 p1 =

√
2C

3
4 η

1
8

h
3
4

, p2 = C
1
4 η

3
8

√
2h

1
4

5 1− 2η
1
12L

1
6 p1 = η

1
3

L
1
3

, p2 = η
1
6

L
2
3

1− 2
4
5 η

1
10

C
1
5

h
1
5 p1=

(2C)
4
5 η

1
10

h
4
5

, p2=
(2C)

2
5 η

3
10

h
2
5

therefore the overlap is L = b − a, and we consider both decompositions with and
without overlap. We discretize the equations using the finite volume method on a
uniform mesh with mesh parameter h. In all comparisons that follow, we simulate
directly the error equations, f = 0, and we use a random initial guess to ensure that
all the frequency components are present in the iteration.

Table 2 shows the iteration count for all Schwarz algorithms considered, in the
overlapping and non-overlapping case, and when the mesh is refined.

Table 2. Number of iterations to attain convergence for different interface conditions
and different mesh sizes in the overlapping and non-overlapping case. The tolerance
is fixed at ε = 10−6.

with overlap, L = 3h without overlap, L = 0

h 1/32 1/64 1/128 1/256 1/32 1/64 1/128 1/256

Case 1 16 24 34 48 131 203 355 593
Case 2 11 14 17 22 51 78 107 157
Case 3 10 12 14 16 18 25 41 131
Case 4 11 13 14 17 27 30 35 43
Case 5 9 10 11 13 17 19 23 31

These results are in good agreement with the theoretical results in Table 1: the
classical algorithm has the strongest dependence on the mesh parameter, and the
other algorithms become less and less dependent.

6 Conclusions

We have shown for the Cauchy-Riemann equations that the classical Schwarz al-
gorithm with characteristic Dirichlet transmission conditions can be convergent
even without overlap. This is because it corresponds to a simple optimized Schwarz
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method for an equivalent elliptic problem, and optimized Schwarz methods are con-
vergent without overlap. We then showed that there are more effective transmission
conditions than the characteristic Dirichlet conditions, and we analyzed an entire
hierarchy of transmission conditions with better and better performance.

Since the Cauchy-Riemann equations can be interpreted as a time discretiza-
tion of a hyperbolic system of equations, our analysis indicates that more effective
transmission conditions than the characteristic ones can be found for hyperbolic
problems, and for their time discretized counterparts. Convergence almost indepen-
dent of the mesh parameter can be achieved with and without overlap. We have
extended these ideas to Maxwell’s equations, see [3], and also obtained a similar
hierarchy of methods with better and better performance.
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