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Summary. In this paper, we show that the additive Schwarz method proposed in
[3] to solve one-obstacle problems converges in a much more general framework. We
prove that this method can be applied to the minimization of functionals over a
general enough convex set in a reflexive Banach space. In the Sobolev spaces, the
proposed method is an additive Schwarz method for the solution of the variational
inequalities coming from the minimization of non-quadratic functionals. Also, we
show that the one-, two-level variants of the method in the finite element space
converge, and we explicitly write the constants in the error estimations depending
on the overlapping and mesh parameters.

1 Introduction

The literature on the domain decomposition methods is very large. We can see,
for instance, the papers in the proceedings of the annual conferences on domain
decomposition methods starting with [5], or those cited in the books [10, 11] and
[13]. The multilevel or multigrid methods can be viewed as domain decomposition
methods and we can cite, for instance, the results obtained in [7, 9, 11].

In [3], an additive Schwarz method has been proposed for symmetric variational
inequalities. Although this method does not assume a decomposition of the convex
set according to the domain decomposition, the convergence proof is given only for
the one-obstacle problems. In Section 2 of this paper, we prove that the method
converges in a much more general framework, i.e. we can apply it to the minimiza-
tion of functionals over a general enough convex set in a reflexive Banach space. In
Section 3, we show that, in the Sobolev spaces, the proposed method is an additive
Schwarz method and it converges for variational inequalities coming from the min-
imization of non-quadratic functionals. Also, in Section 4, we show that the one-,
two-level variants of the method in the finite element space converge, and we ex-
plicitly write the constants in the error estimations depending on the overlapping
and mesh parameters. The convergence rates we find are similar with those ob-
tained in the literature for symmetric inequalities or equations, i.e. they are almost
independent on the overlapping and mesh parameters in the case of the two-level
method.
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2 General Convergence Result

Let us consider a reflexive Banach space V , some closed subspaces of V , V1, · · · , Vm,
and K ⊂ V a non empty closed convex subset. We make the following

Assumption 1 There exists a constant C0 > 0 such that for any w, v ∈ K there
exist vi ∈ Vi, i = 1, . . . ,m, which satisfy

v − w =
m∑

i=1

vi, w + vi ∈ K and
m∑

i=1

||vi|| ≤ C0||v − w||.

We consider a Gâteaux differentiable functional F : V → R, which is assumed
to be coercive on K, in the sense that F (v)

||v|| →∞, as ||v|| → ∞, v ∈ K, if K is not
bounded. Also, we assume that there exist two real numbers p, q > 1 such that for
any real number M > 0 there exist αM , βM > 0 for which

αM ||v − u||p ≤ 〈F ′(v)− F ′(u), v − u〉 and

||F ′(v)− F ′(u)||V ′ ≤ βM ||v − u||q−1
(1)

for any u, v ∈ V with ||u||, ||v|| ≤ M . Above, we have denoted by F ′ the Gâteaux
derivative of F , and we have marked that the constants αM and βM may depend
on M . It is evident that if (1) holds, then for any u, v ∈ V , ||u||, ||v|| ≤M , we have
αM ||v − u||p ≤ 〈F ′(v) − F ′(u), v − u〉 ≤ βM ||v − u||q. Following the way in [6], we
can prove that for any u, v ∈ V , ||u||, ||v|| ≤M , we have

〈F ′(u), v − u〉+
αM
p
||v − u||p ≤ F (v)− F (u) ≤ 〈F ′(u), v − u〉+

βM
q
||v − u||q. (2)

We point out that since F is Gâteaux differentiable and satisfies (1), then F is a
convex functional (see Proposition 5.5 in [4], p. 25).

We consider the minimization problem

u ∈ K : F (u) ≤ F (v), for any v ∈ K, (3)

and since the functional F is convex and differentiable, it is equivalent with the
variational inequality

u ∈ K : 〈F ′(u), v − u〉 ≥ 0, for any v ∈ K. (4)

We can use, for instance, Theorem 8.5 in [8], p. 251, to prove that problem (3) has
a unique solution if F has the above properties. In view of (2), for a given M > 0
such that the solution u ∈ K of (3) satisfies ||u|| ≤M , we have

αM
p
||v − u||p ≤ F (v)− F (u) for any v ∈ K, ||v|| ≤M. (5)

To solve the minimization problem (3), we propose the following additive sub-
space correction algorithm corresponding to the subspaces V1, . . . , Vm and the convex
set K.
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Algorithm 1 We start the algorithm with an arbitrary u0 ∈ K. At iteration n+ 1,
having un ∈ K, n ≥ 0, we solve the inequalities

wn+1
i ∈ Vi, un + wn+1

i ∈ K : 〈F ′(un + wn+1
i ), vi − wn+1

i 〉 ≥ 0,
for any vi ∈ Vi, un + vi ∈ K, (6)

for i = 1, · · · ,m, and then we update un+1 = un + ρ

m∑

i=1

wn+1
i , where ρ is chosen

such that un+1 ∈ K for any n ≥ 0.

A possible choice of ρ to get un+1 ∈ K, is ρ ≤ 1
m

. Indeed, if we write 0 < r =

ρm ≤ 1, then un+1 = (1− r)un + r
m∑

i=1

1

m
(un +wn+1

i ) ∈ K. Evidently, problem (6)

has an unique solution and it is equivalent with

wn+1
i ∈ Vi, un + wn+1

i ∈ K : F (un + wn+1
i ) ≤ F (un + vi),

for any vi ∈ Vi, un + vi ∈ K. (7)

Let us now give the convergence result of Algorithm 1.

Theorem 1. We consider that V is a reflexive Banach, V1, · · · , Vm are some closed
subspaces of V , K is a non empty closed convex subset of V satisfying Assumption
1, and F is a Gâteaux differentiable functional on K which is supposed to be coercive
if K is not bounded, and satisfies (1). On these conditions, if u is the solution of
problem (3) and un, n ≥ 0, are its approximations obtained from Algorithm 1, then
there exists M > 0 such that the following error estimations hold:

(i) if p = q we have

F (un)− F (u) ≤
(

C1

C1 + 1

)n [
F (u0)− F (u)

]
, (8)

||un − u||p ≤ p

αM

(
C1

C1 + 1

)n [
F (u0)− F (u)

]
, (9)

where C1 is given in (14), and
(ii) if p > q we have

F (un)− F (u) ≤ F (u0)− F (u)
[
1 + nC2 (F (u0)− F (u))

p−q
q−1

] q−1
p−q

, (10)

||u− un||p ≤ p

αM

F (u0)− F (u)
[
1 + nC2 (F (u0)− F (u))

p−q
q−1

] q−1
p−q

, (11)

where C2 is given in (18).

Proof. We first prove that the approximation sequence (un)n≥0 of u obtained from
Algorithm 1 is bounded for ρ = r

m
, 0 ≤ r ≤ 1. In view of the convexity of F and

equation (7), we get
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F (un+1) = F (un +
r

m

m∑

i=1

wn+1
i ) = F ((1− r)un +

m∑

i=1

r

m
(un + wn+1

i ))

≤ (1− r)F (un) +
r

m

m∑

i=1

F (un + wn+1
i ) ≤ F (un).

Consequently, using (3), we have F (u) ≤ F (un+1) ≤ F (un) ≤ · · · ≤ F (u0), and,
from the coercivity of F if K is not bounded, we get that there exists M > 0, such
that ||u|| ≤M and ||un|| ≤M , n ≥ 0.

In view of (2) and (6), we get αM
p
||wn+1

i ||p ≤ F (un)−F (un +wn+1
i ). Using this

equation in the place of (7), with a proof similar with the above one, we get

ρ
αM
p

m∑

i=1

||wn+1
i ||p ≤ F (un)− F (un+1) (12)

Now, writing ūn+1 = un +
m∑

i=1

wn+1
i in view of the convexity of F , we have

F (un+1) = F (un +
r

m

m∑

i=1

wn+1
i ) = F ((1− r

m
)un +

r

m
(un +

m∑

i=1

wn+1
i )

≤ (1− r

m
)F (un) +

r

m
F (un +

m∑

i=1

wn+1
i ) ≤ (1− r

m
)F (un) +

r

m
F (ūn+1).

With v := u and w := un, we get a decomposition vni ∈ Vi of u− un satisfying the
conditions of Assumption 1. Using this decomposition, the above equation, (2) and
inequalities (6),

F (un+1)− F (u) + ραM
p
||ūn+1 − u||p

≤ (1− ρ)(F (un)− F (u)) + ρ
(
F (ūn+1)− F (u) + αM

p
||ūn+1 − u||p

)

≤ (1− ρ)(F (un)− F (u)) + ρ〈F ′(ūn+1), ūn+1 − u〉

= (1− ρ)(F (un)− F (u)) + ρ
m∑

i=1

〈F ′(ūn+1), wn+1
i − vni 〉

≤ (1− ρ)(F (un)− F (u)) + ρ

m∑

i=1

〈F ′(un + wn+1
i )− F ′(ūn+1), vni − wn+1

i 〉

≤ (1− ρ)(F (un)− F (u)) + ρβM

(
m∑

i=1

||wn+1
i ||

)q−1 m∑

i=1

||vni − wn+1
i ||

≤ (1−ρ)(F (un)−F (u))+ρβMm
(p−1)(q−1)

p

(
m∑

i=1

||wn+1
i ||p

) q−1
p m∑

i=1

(||vni ||+ ||wn+1
i ||)

≤ (1− ρ)(F (un)− F (u))

+ ρβMm
(p−1)(q−1)

p

(
m∑

i=1

||wn+1
i ||p

) q−1
p
(
C0||u− un||+

m∑

i=1

||wn+1
i ||

)

≤ (1− ρ)(F (un)− F (u))

+ ρβMm
(p−1)(q−1)

p

(
m∑

i=1

||wn+1
i ||p

) q−1
p
(
C0||u− ūn+1||+ (1 + C0)

m∑

i=1

||wn+1
i ||

)
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≤ (1− ρ)(F (un)− F (u)) + ρβMC0m
(p−1)(q−1)

p

(
m∑

i=1

||wn+1
i ||p

) q−1
p

||u− ūn+1||

+ ρβM (1 + C0)m
(p−1)q

p

(
m∑

i=1

||wn+1
i ||p

) q
p

.

But, for any ε > 0 r > 1 and x, y ≥ 0, we have x
1
r y ≤ εx+ 1

ε
1

r−1
y

r
r−1 . Consequently,

we get

F (un+1)− F (u) + ραM
p
||ūn+1 − u||p

≤ (1− ρ)(F (un)− F (u)) + ρβM (1 + C0)m
(p−1)q

p

(
m∑

i=1

||wn+1
i ||p

) q
p

+ ρβMC0
m

(p−1)(q−1)
p

ε
1

p−1

(
m∑

i=1

||wn+1
i ||p

) q−1
p−1

+ ρβMC0εm
(p−1)(q−1)

p ||u− ūn+1||p .

With ε = αM
p

1

βMC0m
(p−1)(q−1)

p

, the above equations become

F (un+1)− F (u) ≤ 1−ρ
ρ

(F (un)− F (un+1)) + βM (1 +C0)m
(p−1)q

p

(
m∑

i=1

||wn+1
i ||p

) q
p

+

(
βMC0m

(p−1)(q−1)
p

) p
p−1

(
p

αM

) 1
p−1

(
m∑

i=1

||wn+1
i ||p

) q−1
p−1

.

In view of this equation and (12), we have

F (un+1)− F (u) ≤ 1− ρ
ρ

(
F (un)− F (un+1)

)

+
1

ρ
q
p

βM (1 + C0)m
(p−1)q

p

(αM
p

)
q
p

(
F (un)− F (un+1)

) q
p (13)

+
1

ρ
q−1
p−1

(
βMC0m

(p−1)(q−1)
p

) p
p−1

(
αM
p

) q
p−1

(
F (un)− F (un+1)

) q−1
p−1 .

We notice that because of (2) we must have p ≥ q. Also, using (5), we see that
error estimations in (9) and (11) can be obtained from (8) and (10), respectively.
Now, if p = q, from the above equation, we easily get equation (8), where

C1 =
1

ρ


1− ρ+mp−1 βM (1 + C0)

αM
p

+mp−1

(
βMC0
αM
p

) p
p−1


 . (14)

Finally, if p > q, from (13), we have

F (un+1)− F (u) ≤ C3

(
F (un)− F (un+1)

) q−1
p−1 (15)

where
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C3 =
1− ρ
ρ

(
F (u0)− F (u)

) p−q
p−1 +

m
(p−1)q

p

ρ
q
p

βM (1 + C0)

(αM
p

)
q
p

(
F (u0)− F (u)

) p−q
p(p−1)

+
mq−1

ρ
q−1
p−1

(βMC0)
p

p−1

(
αM
p

) q
p−1

. (16)

From (15), we get F (un+1)− F (u) + 1

C

p−1
q−1
3

(
F (un+1)− F (u)

) p−1
q−1 ≤ F (un)− F (u),

and we know (see Lemma 3.2 in [12]) that for any r > 1 and c > 0, if x ∈ (0, x0]

and y > 0 satisfy y + cyr ≤ x, then y ≤
(

c(r−1)

crxr−1
0 +1

+ x1−r
) 1

1−r

. Consequently, we

have F (un+1)− F (u) ≤
[
C2 + (F (un)− F (u))

q−p
q−1

] q−1
q−p

, from which,

F (un+1)− F (u) ≤
[
(n+ 1)C2 +

(
F (u0)− F (u)

) q−p
q−1

] q−1
q−p

, (17)

where

C2 =
p− q

(p− 1) (F (u0)− F (u))
p−q
q−1 + (q − 1)C

p−1
q−1

3

. (18)

Equation (17) is another form of equation (10).

3 Additive Schwarz Method as a Subspace Correction
Method

The proofs of the results in this section are similar with those in the case of the
multiplicative Schwarz method which are given in [1] for the infinite dimensional
case, and in [2] for the one- and two-level methods. Detailed proofs for the additive
method will be given in a forthcoming paper.

Let Ω be an open bounded domain in Rd with Lipschitz continuous boundary
∂Ω. We take V = W 1,s

0 (Ω), 1 < s <∞, and a convex closed set K ⊂ V satisfying

Property 1. If v, w ∈ K and θ ∈ C1(Ω̄), with 0 ≤ θ ≤ 1, then θv + (1− θ)w ∈ K.

We consider an overlapping decomposition of the domain Ω, Ω = ∪mi=1Ωi, in which
Ωi are open subdomains with Lipschitz continuous boundary. We associate to this
domain decomposition the subspaces Vi = W 1,s

0 (Ωi), i = 1, . . . ,m. In this case,
Algorithm 1 represents an additive Schwarz method. We can show that Assumption
1 holds for any convex set K having Property 1. Consequently, the additive Schwarz
method geometrically converges if the convex set has this property, but the constant
C0 in Assumption 1 depends on the domain decomposition parameters. Therefore,
since the constants C1 and C2 in the error estimations in Theorem 1 depend on C0,
then these estimations will depend on the domain decomposition parameters, too.

When we use the linear finite element spaces we introduce similar spaces to the
above ones, Vh and V ih , i = 1, . . . ,m, which are considered as subspaces of W 1,s

0 . For
the one- and two-level additive Schwarz methods, we can show that Assumption 1
also holds for any closed convex set Kh satisfying
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Property 2. If v, w ∈ Kh, and if θ ∈ C0(Ω̄), θ|τ ∈ C1(τ) for any τ ∈ Th, and
0 ≤ θ ≤ 1, then Lh(θv + (1− θ)w) ∈ Kh.

We have denoted by Th the mesh partition of the domain, and by Lh the P1-
Lagrangian interpolation operator which uses the function values at the mesh nodes.
We can prove that Assumption 1 holds for any convex set Kh having Property 2.
Moreover, in this case, we are able to explicitly write the dependence of C0 on the
domain decomposition and mesh parameters.

In the case of the one-level method, this constant can be written as

C0 = Cm (1 + 1/δ) , (19)

where δ is the overlapping parameter and C is independent of the mesh parameter
and the domain decomposition. In the case of the two-level method, we introduce
a new subspace V 0

H associated with the coarse mesh TH . The constant C0 can be
written as

C0 = C(m+ 1) (1 +H/δ)Cd,s(H,h), (20)

where

Cd,s(H,h) =





1 if d = s = 1 or 1 ≤ d < s ≤ ∞
(
ln H

h
+ 1
) d−1

d if 1 < d = s <∞
(
H
h

) d−s
s if 1 ≤ s < d <∞.

(21)

We notice that, if the overlapping size δ and the mesh sizes H and h are chosen such
that H/h and H/δ are constant, then the convergence rate of the two-level additive
Schwarz method is independent of the mesh and domain decomposition parameters.
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