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Introduction

This work deals with some Poisson problems in a self-similar ramified domain of R2

with a fractal boundary (see Figure 1). We consider generalized Neumann condition
on the fractal boundary. The first goal is to give a rigorous functional setting. The
second goal is to propose a strategy for computing the solutions in simple subdo-
mains obtained by stopping the construction after a finite number of steps. When
the Neumann data belongs to the Haar basis associated to a dyadic decomposition
of the fractal boundary, we show that the solution can be found by solving a se-
quence of boundary value problems in an elementary cell, with nonhomogeneous and
nonlocal boundary conditions. For a general Neumann data g, the idea is to expand
g on the Haar basis and use the linearity of the problem for deriving an expansion
of the solution.
This work is an extension of [1], where the Hausdorff dimension of the fractal bound-
ary was 1. Related results for the Helmholtz equation are contained in [2]. The proofs
of the theoretical results below are given in [3].

1 The Geometry

Let a be a positive parameter. Consider the points of R2: P1 = (−1, 0), P2 = (1, 0),
P3 = (−1, 1), P4 = (1, 1), P5 = (−1+a

√
2, 1+a

√
2) and P6 = (1−a

√
2, 1+a

√
2). Let

Y 0 and Fi, i = 1, 2 be respectively the hexagonal subset of R2 and the similitudes
defined by the following:

Y 0 = Interior
(

Conv(P1, P2, P3, P4, P5, P6)
)
,

Fi(x) =
(

(−1)i
(

1− a√
2

)
+ a√

2

(
x1 + (−1)ix2

)
, 1 + a√

2
+ a√

2

(
x2 + (−1)i+1x1

))
.

The similitude Fi has the dilation ratio a and the rotation angle (−1)i+1π/4. To
prevent F1(Y 0) and F2(Y 0) from overlapping, one must choose a ≤

√
2/2.
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For n ≥ 1, we call An the set containing all the 2n mappings from {1, . . . , n} to
{1, 2}. We define

Mσ = Fσ(1) ◦ · · · ◦ Fσ(n) for σ ∈ An, (1)

and the ramified open domain, see Figure 1,

Ω = Interior

(
Y 0 ∪

(
∞∪
n=1

∪
σ∈An

Mσ(Y 0)

))
. (2)

Stronger constraints must be imposed on a to prevent the sets Mσ(Y 0), σ ∈ An,
n > 0, from overlapping. It can be shown that the condition is 2

√
2a5 + 2a4 + 2a2 +√

2a− 2 ≤ 0, i.e. , a ≤ a∗ ∼ 0.593465 . . .
We call Γ∞ the self similar set associated to the similitudes F1 and F2, i.e. the
unique compact subset of R2 such that Γ∞ = F1(Γ∞) ∪ F2(Γ∞). The Hausdorff
dimension of Γ∞ can be computed since Γ∞ satisfies the Moran condition (open
set condition) (see [6, 5] ): dimH(Γ∞) = − log 2/ log a. For instance, if a = a∗, then
dimH(Γ∞) ∼ 1.3284371.
We split the boundary of Ω into Γ∞, Γ 0 = [−1, 1]×{0} and Σ = ∂Ω\(Γ 0∪Γ∞). We
define the polygonal open domain Y N obtained by stopping the above construction
at step N + 1,

Y N = Interior

(
Y 0 ∪

(
N∪
n=1

∪
σ∈An

Mσ(Y 0)

))
. (3)

We also define the sets Γσ =Mσ(Γ 0) and ΓN = ∪σ∈ANΓ
σ.

−1 1

1

45◦

2a

Fig. 1. The ramified domain Ω (only a few generations are displayed).

2 Functional Setting

Let H1(Ω) be the space of functions in L2(Ω) with first order partial derivatives in
L2(Ω). We also define

V(Ω) =
{
v ∈ H1(Ω); v|Γ0 = 0

}
and V(n) =

{
v ∈ H1(Y n); v|Γ0 = 0

}
.
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Theorem 1. There exists a constant C > 0, such that

∀u ∈ H1(Ω), ‖u‖2L2(Ω) ≤ C
(
‖∇u‖2L2(Ω) + ‖u|Γ0‖2L2(Γ0)

)
. (4)

The embedding of H1(Ω) in L2(Ω) is compact.

For defining traces on Γ∞, we need the classical result, see [4]:

Theorem 2. There exists a unique Borel regular probability measure µ on Γ∞ such
that for any Borel set A ⊂ Γ∞,

µ(A) = 1/2µ
(
F−1

1 (A)
)

+ 1/2µ
(
F−1

2 (A)
)
. (5)

The measure µ is called the self-similar measure defined in the self similar triplet
(Γ∞, F1, F2). Let L2

µ be the Hilbert space of the functions on Γ∞ that are µ-

measurable and square integrable w.r.t. µ, with the norm ‖u‖L2
µ

=
√∫

Γ∞
u2dµ.

A Hilbertian basis of L2
µ can be constructed with e.g. Haar wavelets.

Consider the sequence of linear operators ℓn : H1(Ω)→ L2
µ,

ℓn(u) =
∑

σ∈An

(
1/|Γσ|

∫

Γσ

u dx

)
1Mσ(Γ∞), (6)

where |Γσ| is the Lebesgue measure of Γσ.

Lemma 1. The sequence (ℓn)n converges in L(H1(Ω), L2
µ), to an operator that we

call ℓ∞. The operator ℓ∞ can be seen as a renormalized trace operator.

3 A Class of Poisson Problems

Take g ∈ L2
µ and u ∈ H 1

2 (Γ 0). We look for U(u, g) ∈ H1(Ω) s.t.

(U(u, g))|Γ0 = u, and

∫

Ω

∇(U(u, g)) · ∇v =

∫

Γ∞
gℓ∞(v) dµ, ∀v ∈ V(Ω). (7)

If it exists, then (U(u, g)) satisfies ∆(U(u, g)) = 0 in Ω, and ∂n(U(u, g)) = 0 on Σ.
We shall discuss the boundary condition on Γ∞ after the following:

Theorem 3. For g ∈ L2
µ and u ∈ H 1

2 (Γ 0), (7) has a unique solution.
Furthermore, if g = ℓ∞(g̃), g̃ ∈ C1(Ω), if wq ∈ H1(Y q) is the solution of:

∆wq = 0 in Y q, wq|Γ0 = u, ∂nwq = 0 on ∂Yq\(Γ 0 ∪ Γ q+1),

∂nwq = (1/|Γ q+1|)g̃|Γq+1 on Γ q+1,

then limq→∞ ‖(U(u, g))|Y q − wq‖H1(Y q) = 0.

Theorem 3 says in particular that (7) has an intrinsic meaning for a large class of
data g. From the definition of wq, we may say that U(u, g) satisfies a Neumann
condition on Γ∞ with datum g.
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4 A Strategy for Computing U(u, g)|Y n

4.1 The Case when g = 0.

We use the notation H(u) = U(u, 0). Call T the Dirichlet-Neumann operator from

H
1
2 (Γ 0) to (H

1
2 (Γ 0))′, Tu = ∂nH(u)|Γ0 . We remark that T ∈ O, the cone containing

the self-adjoint, positive semi-definite, bounded linear operators from H
1
2 (Γ 0) to

(H
1
2 (Γ 0))′ which vanish on the constants.

If T is available, the self-similarity implies that H(u)|Y 0 = w, where w is s.t.

∆w = 0 in Y 0,
∂w

∂n
|∂Y 0\(Γ0∪Γ1) = 0, (8)

w|Γ0 = u, (9)

∂w

∂n
+

1

a

(
T (w|Fi(Γ0) ◦ Fi)

)
◦ F−1

i = 0 on Fi(Γ
0), i = 1, 2. (10)

We stress the fact that (8)-(10) is well posed, from the observation on T above. Since
(10) allows computing H(u)|Y 0 , it is called a transparent boundary condition. The
construction may be generalized to H(u)|Y n−1 , n ≥ 1:

Proposition 1. For u ∈ H 1
2 (Γ 0), H(u)|Y n−1 can be found by successively solving

1 + 2 + · · ·+ 2n−1 boundary value problems in Y 0:
• Loop: for p = 0 to n− 1,
• • Loop : for σ ∈ Ap, (at this point, if p ≥ 1, (H(u))|Γσ is known)
• •• Find w ∈ H1(Y 0) satisfying the boundary value problem (8), (10), and

either (9) if p = 0, or w|Γ0 = H(u)|Γσ ◦Mσ if p > 0.
• •• Set H(u)|Y 0 = w if p = 0. If p > 0, set H(u)|Mσ(Y 0) = w ◦ (Mσ)−1.

We are left with computing T : in Theorem 4 below, we show that T can be obtained
as the limit of a sequence of operators constructed by a simple induction. This is
the consequence of the following result:

Proposition 2. There exists a constant ρ < 1 such that for any u ∈ H 1
2 (Γ 0),

∑

σ∈Ap

∫

Ωσ

|∇H(u)|2 ≤ ρp
∫

Ω

|∇H(u)|2, ∀p > 0. (11)

In order to compute T , we introduce the mapping M : O 7→ O: for any Z ∈ O,

∀u ∈ H 1
2 (Γ 0), M(Z)u = ∂nw|Γ0 , (12)

where w satisfies (8), (9) and ∂w
∂n

+ 1
a

(
Z(w|Fi(Γ0) ◦ Fi)

)
◦ F−1

i = 0 on Fi(Γ
0).

Theorem 4. The operator T is the unique fixed point of M. Moreover, if ρ, 0 < ρ <
1, is the constant appearing in (11), then, for all Z ∈ O, ∃C > 0 s.t.

‖Mp(Z)− T‖ ≤ Cρ
p
4 , ∀p ≥ 0. (13)

In what follows, we propose a method for computing (U(0, g))|Y n−1 , (n is some
fixed positive integer). We first distinguish the case when g belongs to the Haar
basis associated to the dyadic decomposition of Γ∞.
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4.2 The Case when g Belongs to the Haar Basis

The case when g is a Haar wavelet is particularly favorable because transparent
boundary conditions may be used, thanks to self-similarity.
Let us call eF = U(0, 1Γ∞).

We introduce the linear operator B, bounded from (H
1
2 (Γ 0))′ to L2(Γ 0), by: Bz =

− ∂w
∂x2
|Γ0 , where w ∈ V(Y 0) is the unique weak solution to

∆w = 0 in Y 0,
∂w

∂n
= 0 on ∂Y0\(Γ 0 ∪ Γ 1), (14)

∂w

∂x2
|Fi(Γ0) +

1

a

(
T (w|Fi(Γ0) ◦ Fi)

)
◦ F−1

i = −z ◦ F−1
i , i = 1, 2. (15)

The self-similarity in the geometry and the scale-invariance of the equations are the
fundamental ingredients for proving the following theorem:

Theorem 5. The normal derivative yF of eF on Γ 0 belongs to L2(Γ 0) and is the
unique solution to: yF = ByF and

∫
Γ0 yF = −1.

For all n ≥ 1, the restriction of eF to Y n−1 can be found by successively solving
1 + 2 + · · ·+ 2n−1 boundary value problems in Y 0, as follows:
•Loop: for p = 0 to n− 1,
• • Loop : for σ ∈ Ap, (at this point, if p > 0, eF |Γσ is known)
• •• Solve the boundary value problem in Y 0: find w ∈ H1(Ω) satisfying (14),

with w|Γ0 = 0 if p = 0, w|Γ0 = eF |Γσ ◦Mσ if p > 0, and

∂w

∂n
+

1

a

(
T (w|Fi(Γ0) ◦ Fi)

)
◦ F−1

i = − 1

2p+1a
yF ◦ F−1

i , on Fi(Γ
0), i = 1, 2.

• •• Set eF |Y 0 = w if p = 0, else set eF |Mσ(Y 0) = w ◦ (Mσ)−1.

When g is a Haar wavelet on Γ∞, the knowledge of T , eF and yF permits U(0, g)
to be computed: call g0 = 1F1(Γ∞) − 1F2(Γ∞) the Haar mother wavelet, and define
e0 = U(0, g0). One may compute e0|Y n by using the following:

Proposition 3. We have e0|Y 0 = w, where w ∈ V(Y 0) satisfies (14) and

∂w

∂n
+

1

a

(
T (w|Fi(Γ0) ◦ Fi)

)
◦ F−1

i =
(−1)i

2a
yF ◦ F−1

i on Fi(Γ
0), i = 1, 2, (16)

Furthermore, for i = 1, 2,

e0|Fi(Ω0) = (−1)i+1/2 eF ◦ F−1
i +

(
H(e0|Fi(Γ0) ◦ Fi)

)
◦ F−1

i . (17)

For a positive integer p , take σ ∈ Ap. Call gσ the Haar wavelet on Γ∞, defined by
gσ|Mσ(Γ∞) = g0 ◦ M−1

σ , and gσ|Γ∞\Mσ(Γ∞) = 0, and call eσ = U(0, gσ), and yσ

(resp. y0) the normal derivative of eσ (resp. e0) on Γ 0. The following result shows
that (eσ, yσ) can be computed by induction:

Proposition 4. The family (eσ, yσ) is defined by induction: assume that Mσ =
Fi ◦Mη for some i ∈ {1, 2}, η ∈ Ap−1, p > 1. Then eσ|Y 0 = w, where w ∈ V(Y 0)
satisfies (14) and

∂w

∂n
+

1

a

(
T (w|Fi(Γ0) ◦ Fi)

)
◦ F−1

i = − 1

2a
yη ◦ F−1

i on Fi(Γ
0), i = 1, 2. (18)
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Then, with j = 1− i, eσ|Ω\Y 0 is given by

eσ|Fi(Ω) =
1

2
eη ◦ F−1

i +
(
H(eσ|Fi(Γ0) ◦ Fi)

)
◦ F−1

i ,

eσ|Fj(Ω) =
(
H(eσ|Fj(Γ0) ◦ Fj)

)
◦ F−1

j .
(19)

If Mσ = Fi, i = 1, 2, then yη (resp. eη) must be replaced by y0 (resp. e0) in (18),
(resp.(19)).

What follows indicates that for n ≥ 0 fixed, ‖∇eσ‖L2(Y n), σ ∈ Ap, decays exponen-
tially as p→∞:

Theorem 6. ∃C > 0 and ρ, 0 < ρ < 1 s.t.

‖∇eσ‖L2(Y n) ≤ C2−nρp−n, ∀σ ∈ Ap, 0 ≤ n < p− 1. (20)

4.3 The General Case

Consider now the case when g is a general function in L2
µ. It is no longer possible to

use the self-similarity in the geometry for deriving transparent boundary conditions
for U(0, g). The idea is different: one expands g on the Haar basis, and use the
linearity of (7) with respect to g for obtaining an expansion of U(0, g) in terms of
eF , e0, and eσ, σ ∈ Ap, p > 1. Indeed, one can expand g ∈ L2

µ as follows:

g = αF 1Γ∞ + α0g
0 +

∞∑

p=1

∑

σ∈Ap

ασg
σ. (21)

The following result, which is a consequence of Theorem 6, says that (U(0, g))|Y n

can be expanded in terms of eF |Y n , e0|Y n , and eσ|Y n , σ ∈ Ap, p ≥ 1. Moreover,
a few terms in the expansion are enough to approximate (U(0, g))|Y n with a good
accuracy:

Proposition 5. Assume (21) and call rP the error rP = U(0, g)− αF eF − α0e
0 −∑P

p=1

∑
σ∈Ap

ασe
σ. ∃C (independent of g) s.t.

‖rP ‖H1(Y n) ≤ C
√

2−P ρP−n‖g‖L2
µ
, ∀n, P, 0 ≤ n < P − 1. (22)

Generalizations. Here we discuss possible generalizations of the example above.
The geometrical construction only depends on three basic elements: the elementary
cell Y 0 and the similitudes F1 and F2 (dilation ratii a1 and a2, 0 < ai < 1, rotation
angles α1 and α2). The following conditions must be satisfied: 1) the elementary cell
Y 0 is a Lipschitz domain. 2) The domain Ω defined by (2) is a connected open set.
3) For σ1, σ2 ∈ ∪n∈NAn, σ1 6= σ2, Mσ1(Y 0)∩Mσ2(Y 0) = ∅. If these conditions are
fulfilled, all the above results apply. The important point is to use the measure µ
defined in Theorem 2. Of course, one can consider constructions with to more than
two similitudes, i.e. Fi, i = 1, . . . , p, with respective dilation ratio ai > 0 and angles
αi.
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5 Numerical Results

To transpose the strategies described above to finite element methods, one needs to
use self-similar triangulations of Ω: we first consider a regular family of meshes T 0

h of
Y 0, with the special property that for i = 1, 2, the set of nodes of T 0

h lying on Fi(Γ
0)

is the image by Fi of the set of nodes lying on Γ 0. Then one can construct self-similar
meshes of Ω by Th = ∪∞p=0 ∪σ∈Ap Mσ(T 0

h ), with self-explanatory notations. With
such meshes and conforming finite elements, one can transpose everything to the
discrete level.
An Example. The aim is to compute U(0, g)|Y 5 , with g(s) = (1s<0−1s>0) cos(3πs/2),
where s ∈ [−1, 1] is a parametrization of Γ∞. We first compute the operator T by
the method in § 4.1 and eσ|Y 5 , for σ ∈ Ap, p ≤ 5 by the method in § 4.2. Then we
expand g on the Haar basis and use the expansion in Proposition 5.
In the top of Figure 2, we plot two approximations of U(0, g)|Y 5 ; we have used
the expansion in Proposition 5., with P = 5 on the left, and P = 2 on the right.
We see that taking P = 2 is enough for approximating U(0, g)|Y 0 , but not for
U(0, g)|Y j , j ≥ 1. In the bottom of Figure 2, we plot (in log scales) the errors
‖∑5

p=i

∑
σ∈Ap

ασeσh‖L2(Y j), for i = 2, 3, 4 and j = 0, 1, 2, 3, 4, where ασ are the
coefficients of the wavelet expansion of g. The behavior is the one predicted by
Proposition 5.
Again, we stress that there is no error from the domain truncation, and that we did
not solve any boundary value problem in Y 5, but a sequence of boundary problems
in Y 0. Nevertheless, the function smoothly matches at the interfaces between the
subdomains.
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Fig. 2. Top: Contours of the approximations of U(0, g)|Y 5 by taking P = 5 (left) and
P = 2 (right). Bottom: ‖∑5

p=i

∑
σ∈Ap

ασeσh‖L2(Y j) for i = 2, 3, 4 and j = 0, 1, 2, 3, 4.
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