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Statistical Inverse Problems

Statistical Inverse Problems: Given observations of the
model

Y = Kf + ε

where

K is an operator

ε measurement noise

estimate (reconstruct) the function f .

If K is linear, we say that this is a linear inverse problem.

If the errors are not identically distributed, than the noise
process is called heteroscedastic.
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The models

We consider two models.

For i = 1, . . . , n

Yi ,n =

∫ i/n

0
σ (s) dWs + τ

(
i

n

)
εi ,n. (1)

Ỹi ,n = σ

(
i

n

)
Wi/n + τ

(
i

n

)
εi ,n, (2)

σ, τ are deterministic, unknown, positive functions.

εi ,n, i.i.d., E (εi ,n) = 0, E
(
ε2i ,n

)
= 1, E

(
ε4i ,n

)
<∞.

(Wt)t≥0 is a Brownian motion.

(ε1,n, . . . , εn,n) and (Wt)t≥0 are considered to be
independent for i = 1, . . . , n.
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Connections to inverse problems

The models can be seen as linear statistical inverse problems
with random operator. For i = 1, . . . , n

Yi ,n = (Kσ)

(
i

n

)
+ heteroscedastic noise,

Ỹi ,n =
(
K̃σ
)( i

n

)
+ heteroscedastic noise,

where

(Kσ) (t) =

∫ t

0
σ (s) dWs ,(

K̃σ
)

(t) = σ (t) Wt .

Statistical Problem

Estimation of the functions σ2 and τ2, pointwise.
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Differences

σ (t) Wt

∫ t
0 σ (s) dWs σ
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From now on we will only consider Model (1). Estimation and
theoretical results are similar for the second model.
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Origin

The model stems from high-frequency modeling of stock
returns (Fan et al. ’03, Barndorff-Nielsen et al. ’06).

These models are however much more general. Economic
theory indicates that σ is stochastic itself.

Theory focusses so far only on estimation of the integrated
moments of volatility (Ait-Sahalia et al. ’05, Podolskij and
Vetter ’09), i.e.∫ t

0
σ2p (s) ds p = 1, 2, . . .

Remarkable exceptions are Malliavin and Mancino ’05 and
Hoffmann ’99.
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Estimation of σ2 and τ 2

Non-parametric approach necessary.

We do not have independent observations.

Transformation that diagonalizes the process depends on
the unkown quantities σ(t) and τ(t) and can not be
computed explicitly in general.
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Estimation

Step 1(4):

Consider the weighted increments
∆iY (g) := g (i/n) (Yi+1,n − Yi ,n) and observe that

∆iY (g) ≈ n−1/2 (gσ)

(
i

n

)
ηi ,n + (gτ)

(
i

n

)
(εi+1,n − εi ,n)︸ ︷︷ ︸

MA(1)

,

where ηi ,n ∼ N (0, 1) , iid.

The noise term “dominates”.

Important: The variance of the first term is of order 1/n
whereas the eigenvalues of the covariance of the
MA (1)-process behave like i2/n2.

In spectral domain, we can use the first
√

n observations.

This can be viewed as the degree of ill-posedness of the
problem.
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Estimation

Step 1(4):

Consider the weighted increments
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Estimation

Step 2(4):

The increment process
∆Y (g) := (∆1Y (g) , . . . ,∆n−1Y (g)) is stationary, if
σ, τ, g are constants.

Stationary processes are “almost” diagonalized by Discrete
Fourier Transforms.

Therefore, we transform by DST, i.e. we consider

Z := Dn (∆Y (g)) ,

where

Dn :=

(√
2

n
sin

(
ijπ

n

))
i ,j=1,...,n−1

.
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Estimation

Step 3(4):

Let Z := Dn (∆Y (g)) and define the estimator

̂〈τ2, g2〉 :=
1

n −m

n−1∑
i=m+1

λ−1
i Z 2

i ,

where λi = 4 sin2 (iπ/ (2n)) and m = mn, s.t.
m/
√

n →∞ and m/n → 0.

Under smoothness assumptions on σ, τ , ̂〈τ2, g2〉 estimates∫ 1
0 τ

2(s)g2 (s) ds at a convergence rate n−1/2.



Nonparametric
Minimax

Estimation of
the Volatility

in High-
Frequency
Models

Corrupted by
Noise

Schmidt-
Hieber

Models

Estimation

Numerical
Results

Summary/
Outlook

Estimation

Similar for ̂〈σ2, g2〉

̂〈σ2, g2〉 :=
√

n

2[n1/2]∑
i=[n1/2]+1

Z 2
i − λi

̂〈τ2, g2〉︸ ︷︷ ︸
bias correction

.

Under smoothness assumptions on σ, τ , ̂〈σ2, g2〉 estimates∫ 1
0 σ

2(s)g2 (s) ds at a convergence rate n−1/4.



Nonparametric
Minimax

Estimation of
the Volatility

in High-
Frequency
Models

Corrupted by
Noise

Schmidt-
Hieber

Models

Estimation

Numerical
Results

Summary/
Outlook

Step 4(4):

We are able to estimate
〈
σ2, g2

〉
for all sufficiently smooth

g .

We use this to construct a series estimator.
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Basis Functions

Consider the L2[0, 1] ONS,
{ψk} =

{
1,
√

2 cos (kπt) , k = 1, . . .
}
.

Further we introduce fk : [0, 1] → R,

fk(x) := ψk (x/2) , k = 0, 1, . . .

Note

f 2
k (x) = 1 + cos(kπx) =: ψ0(x) + 2−1/2ψk(x), k ≥ 1.

ψiψj = 2−1/2(ψi−j + ψi+j)

sin( 2i−1
2 π) sin( 2j−1

2 π) = 2−3/2(ψi−j + ψi+j+1)
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The pointwise estimator

The estimator of σ2(t) is then given by

σ̂2
N (t) = ̂〈σ2, f 2

0

〉
+ 2

N∑
i=1

(
̂〈σ2, f 2

i

〉
− ̂〈σ2, f 2

0

〉)
cos (iπt) ,

where N is some threshold parameter.
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Assumptions

Function space: (Truncated) Sobolev s-ellipsoid

Θb
s = Θb

s (α,C , [l , u])

=
{
f ∈ L2[0, 1] : l ≤ f ≤ u, ∃ (θn)n ,

s. t. f (x) = θ0 + 2
∞∑
i=1

θi cos (iπx) ,
∞∑
i=1

i2αθ2
i ≤ C

}

We always assum that l > 0, u <∞.
Characterisation:
For any q odd, q < α ∈ N, f (q)(0) = f (q)(1) = 0 and∫ 1

0
(f (α))2(x)dx ≤ C̃
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Theoretical results of the estimator

Upper bound on the risk, Munk, S-H ’08

Suppose Q, Q̄ > 0 are fixed constants. Assume model (1) and
α > 3/4, β > 5/4. Then it holds for N∗ = n1/(4α+2)

sup
τ2∈Θb

s (β,Q̄), σ2∈Θb
s (α,Q)

MISE
(
σ̂2

N∗
)

= O
(
n−α/(2α+1)

)
.

Note that this is ”half” of the minimax rate in nonparametric
regression. Recall: Eigenvalues λi ∼ i2/n2 are of order O (1/n)
as long as i = O

(√
n
)
.
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Lower bound

Many results known about lower bounds, mainly for
independent observations and regression.

Here:

Estimation of the scale of a Brownian motion.
Dependent observations.
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Idea of proof

Similar as in nonparametric regression: We use a multiple
testing argument.

Main problem: Bound Kullback-Leibler divergence between
two multivariate centered normal random variables.

Results by Golubev ’08 and Reiß ’08.: Bounds for
Hellinger distance of multivariate centered normal r. v.s
under the restriction that eigenvalues of covariance matrix
are uniformly bounded or as in Reiß ’08 that one
covariance matrix is the identity.

However for our purpose one has to allow that eigenvalues
tend to 0 and infinity.
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KL distance bound

Munk, S-H ’08

Let X ∼ N (µ,Σ0) and Y ∼ N (µ,Σ1) and denote by PX and
PY the corresponding probability measures. Assume
0 < CΣ0 ≤ Σ1 for some constant 0 < C ≤ 1. Then

dKL(PY ,PX ) ≤ 1

4C 2

∥∥Σ−1
0 Σ1 − In

∥∥2

F
.
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Lower bound

Munk, S-H ’08

Assume model (2) or model (1), α ∈ N∗ and τ > 0. Then
there exists a C > 0, such that

lim
n→∞

inf
σ̂2

n

sup
σ2∈Θb

s (α,Q)

E
(
n

α
2α+1

∥∥σ̂2 − σ2
∥∥2

2

)
≥ C .



Nonparametric
Minimax

Estimation of
the Volatility

in High-
Frequency
Models

Corrupted by
Noise

Schmidt-
Hieber

Models

Estimation

Numerical
Results

Summary/
Outlook

n=25.000, normal error, periodic bound.,
∞-smooth
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n=25.000, low smoothness: α < 3/2
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n=25.000, normal error, α < 7/2
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low smoothness: jump volatility
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low smoothness: oscillating volatility
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Robustness: t2-distribution
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Oscillating vol., t2-distr.
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Jump volatility, t2-distr.
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Summary

Microstructure noise models with deterministic volatility
provide some insight into volatility estimation.

Viewing these models as a statistical inverse problem
problems reveals similarities to deconvolution.

Degree of ill posedness corresponds to 1/2.

Our approach relies heavily on Fourier methods and hence
on a minimal smoothness of the estimated functions.
Nevertheless, it seems quite robust.
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Summary/Outlook

Fourier type estimator achieves optimal (global) rates of
convergence.

Fast computable O (Nn log n).

Open issues: Adaptation, locally adaptive basis, . . .
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