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y = AX+¢
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Idea
Prototypical inverse problem

y = AX+¢

with operator A : H — H self-adjoint, positive and compact;
A has singular basis (ug, Ax) with Ay > X\, >--- | 0.
Truncated SVD estimators:

£(n)
2 =AY uiu
k=1

with cut-off function ¢ : N — N (/(n + 1) > £4(n)).
Quasi-optimality criterion for parameter n:
Look where % (") stabilizes:

n* := argmin, || ("1 — x|
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Practical performance
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(Inverse problem in option calibration for mathematical finance)
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The model

y = AX + £ resp. Yk = Xk + & resp. Kk = X + A "

Statistical noise &, here: & ~ N(O,eﬁ) independent.
Assume oy = gkAgl — oo (ill-posed problem):

Xk =Xk +oknk, 1k ~ N(0,1)
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The model

y = AX + £ resp. Yk = Xk + & resp. Kk = X + A "

Statistical noise &, here: & ~ N(O,eﬁ) independent.
Assume oy = gkAgl — oo (ill-posed problem):
Xk =Xk +oknk, 1k ~ N(0,1)

Bias-variance decomposition of mean squared error (MSE):

£(n)
BlIx™ - x|2 B[S (G- %2+ Y ]
k=1

k=¢(n)+1

o0

LR

k=¢(n)+1

Variance s(n) Bias?4(n)



The mathematical setup

Estimating the error?

E[|x™ — x|[’] = s(n) + 5(n)

On the other hand, in the mean :

E[[x ™Y —x™M|2] = s(n + 1) = s(n) + B(n) — B(n + 1)



The mathematical setup

Estimating the error?

E[|x™ — x|[’] = s(n) + 5(n)

On the other hand, in the mean :

E[x™Y —xM|P] = s(n + 1) — s(n) + 5(n) — B(n + 1)
Choose the cut-off function /() for geometrically growing
variance:

J1 < ¢s < Cs: Css(n) <s(n+ 1) < Css(n)

(typical: £(n) = |q"] for white noise and polynomial d.o.i.)
Hence: s(n + 1) —s(n) =< s(n) and we have

E[[x"™ —x ™2 < E[x™ —x|[?] if 5(n) - 5(n + 1) = B(n).
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Average case scenario

What functions x satisfy 3(n) — g(n + 1) =< 5(n)?
Typical setting: x2 = k 2 for some o > 1/2 suffices.
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Average case scenario

What functions x satisfy 3(n) — g(n + 1) =< 5(n)?
Typical setting: x2 = k 2 for some o > 1/2 suffices.

A far more general average case analysis is possible:
Consider independent coefficients xx ~ N(0,~2):
(denote by [ the joint mean w.r.t. to noise and prior law)

o)~ B =B Y xF] = > 7
k=£(n)+1 k=€(n)+1
Assumption on geometric decay of average bias:

J1 <cp, <Cp: cpb(n+1) <b(n) <Cyb(n+1)

Typical setting: 72 = k ~2“ for some « > 1/2 suffices.
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Main result

Theorem
The quasi-optimality index n* is almost surely well-defined:

n* := argmin, ||[R("FY) — x|
and the data-driven estimator satisfies the oracle inequality

/

Mo 1 ol 1/2
B[x0) — x|l <k min &£ — x| 2]
n>1

with a constant K = K(cs, ¢y, Cs, Cp, 1, ) > O for all

r

O<ax< .
log(Cp) log(Cs

max( ey Togter))
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What moments « do we attain?

~ 1/ WA 1/2
B[ —xe] " < K min [ - x|?]
n>

forall0 <a<r/ max('li’)%(&)), 'I%gg((gj))) with

¢ = jog [0+ 3) = s(m) + (b() —b(n + 1)

> > 1.
n>1 MaXy(n)<k<e(n+1) (0% + 7¢)
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What moments « do we attain?

~ 1/« - 1/2
150 —xe] " < K min& |80 — 7]
n>

forall0 <a<r/ max('lg%(&)), 'I%%((Sj))) with

e 150+ 1) = s(m) + (b(n) — b(n + 1))

> 2 > 1
n>1 MaXy(n) <k <e(n+1) (T + Vi)

Example

¢ white noise, \y < k=", ¢(n) = |q" |, x <k
(hence: cs = Cs, ¢, = Cyp)

Then:r > (£(2) — (1)) min((2v + 1)71, (2 + 1)71)
We attain the higher moments «, the larger g > 1.



Main result

|dea of proof

———Av. Error
Functional

1. Compare n* with index n* such that
s(n# 4+ 1) > b(n* + 1), but s(n¥) < b(n#).

2. Derive deviation bounds for generalized y?-distribution at
+oo and(!) O.

3. Bound uniformly the deviations from the mean errors
s(n) resp. b(n).
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Discussion and summary

Heuristic quasi-optimality criterion works well in practice.

Counterexamples a la Bakushinskii show that it does not
always work.

The quasi-optimality criterion estimates the MSE for
geometric s(n) and b(n) without using the noise level.

Average case analysis with geometrically decaying weights
in the coefficients.

We obtain a general oracle-type inequality.

The sparser the subsampling /(.), the higher the moments
we achieve.

Generalisation to other methods than TSVD seem feasible.
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Discussion and summary

Heuristic quasi-optimality criterion works well in practice.

Counterexamples a la Bakushinskii show that it does not
always work.

The quasi-optimality criterion estimates the MSE for
geometric s(n) and b(n) without using the noise level.

Average case analysis with geometrically decaying weights
in the coefficients.

We obtain a general oracle-type inequality.

The sparser the subsampling /(.), the higher the moments
we achieve.

Generalisation to other methods than TSVD seem feasible.

Thank you very much for your attention!
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