Markus Reiß*

Institute of Mathematics Humboldt University Berlin www.math.hu-berlin.de/~mreiss

Conference Applied Inverse Problems Vienna, 21 July 2009

^{*}joint with F. Bauer

Outline

The Idea

The mathematical setup

Main result

Summary

Idea

Prototypical inverse problem

$$y = Ax + \xi$$

with operator $A: H \to H$ self-adjoint, positive and compact; A has singular basis (u_k, λ_k) with $\lambda_1 \ge \lambda_2 \ge \cdots \downarrow 0$.

$$\hat{\mathbf{x}}^{(n)} := \sum_{k=1}^{\ell(n)} \lambda_k^{-1} \langle \mathbf{y}, \mathbf{u}_k \rangle \mathbf{u}_k$$

$$n^* := \operatorname{argmin}_n \|\hat{x}^{(n+1)} - \hat{x}^{(n)}\|$$

Idea

Prototypical inverse problem

$$y = Ax + \xi$$

with operator $A: H \to H$ self-adjoint, positive and compact; A has singular basis (u_k, λ_k) with $\lambda_1 \ge \lambda_2 \ge \cdots \downarrow 0$. Truncated SVD estimators:

$$\hat{x}^{(n)} := \sum_{k=1}^{\ell(n)} \lambda_k^{-1} \langle y, u_k \rangle u_k$$

with cut-off function $\ell: \mathbb{N} \to \mathbb{N}$ ($\ell(n+1) > \ell(n)$).

$$n^* := \operatorname{argmin}_n \|\hat{x}^{(n+1)} - \hat{x}^{(n)}\|$$

Idea

Prototypical inverse problem

$$y = Ax + \xi$$

with operator $A: H \to H$ self-adjoint, positive and compact; A has singular basis (u_k, λ_k) with $\lambda_1 \ge \lambda_2 \ge \cdots \downarrow 0$. Truncated SVD estimators:

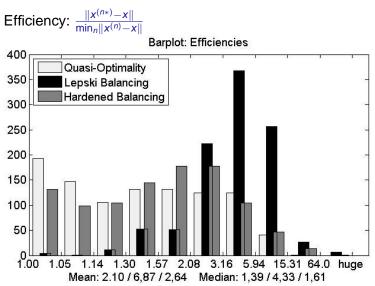
$$\hat{x}^{(n)} := \sum_{k=1}^{\ell(n)} \lambda_k^{-1} \langle y, u_k \rangle u_k$$

with cut-off function $\ell : \mathbb{N} \to \mathbb{N}$ ($\ell(n+1) > \ell(n)$). Quasi-optimality criterion for parameter *n*: Look where $\hat{\mathbf{x}}^{(n)}$ stabilizes:

$$n^* := \operatorname{argmin}_n \|\hat{x}^{(n+1)} - \hat{x}^{(n)}\|$$

rtline The Idea The mathematical setup Main result Summary

Practical performance



(Inverse problem in option calibration for mathematical finance)

$$y = Ax + \xi$$
 resp. $y_k = \lambda_k x_k + \xi_k$ resp. $\tilde{x}_k = x_k + \lambda_k^{-1} \xi_k$

Statistical noise ξ , here: $\xi_k \sim N(0, \varepsilon_k^2)$ independent.

Assume $\sigma_k := \varepsilon_k \lambda_k^{-1} \to \infty$ (*ill-posed* problem):

$$\tilde{x}_k = x_k + \sigma_k \eta_k, \quad \eta_k \sim N(0, 1)$$

Bias-variance decomposition of mean squared error (MSE):

$$\mathbb{E}[\|\mathbf{x}^{(n)} - \mathbf{x}\|^2] = \mathbb{E}\left[\sum_{k=1}^{\ell(n)} (\tilde{\mathbf{x}}_k - \mathbf{x}_k)^2 + \sum_{k=\ell(n)+1}^{\infty} \mathbf{x}_k^2\right]$$

$$= \sum_{k=1}^{\ell(n)} \sigma_k^2 + \sum_{k=\ell(n)+1}^{\infty} \mathbf{x}_k^2$$
Variance $s(n)$
Bias² $\beta(n)$

The mathematical setup

$y = Ax + \xi$ resp. $y_k = \lambda_k x_k + \xi_k$ resp. $\tilde{x}_k = x_k + \lambda_k^{-1} \xi_k$

Statistical noise ξ , here: $\xi_k \sim N(0, \varepsilon_k^2)$ independent.

Assume $\sigma_k := \varepsilon_k \lambda_k^{-1} \to \infty$ (*ill-posed* problem):

$$\tilde{\mathbf{x}}_{k} = \mathbf{x}_{k} + \sigma_{k} \eta_{k}, \quad \eta_{k} \sim N(0, 1)$$

Bias-variance decomposition of mean squared error (MSE):

$$\mathbb{E}[\|x^{(n)} - x\|^2] = \mathbb{E}\left[\sum_{k=1}^{\ell(n)} (\tilde{x}_k - x_k)^2 + \sum_{k=\ell(n)+1}^{\infty} x_k^2\right]$$

$$= \underbrace{\sum_{k=1}^{\ell(n)} \sigma_k^2}_{\text{Variance } s(n)} + \underbrace{\sum_{k=\ell(n)+1}^{\infty} x_k^2}_{\text{Bias}^2 \beta(n)}$$

Estimating the error?

The mathematical setup

$$\mathbb{E}[\|\mathbf{x}^{(n)} - \mathbf{x}\|^2] = \mathbf{s}(n) + \beta(n)$$

On the other hand, in the mean:

$$\mathbb{E}[\|x^{(n+1)} - x^{(n)}\|^2] = s(n+1) - s(n) + \beta(n) - \beta(n+1)$$

Choose the cut-off function $\ell(\bullet)$ for geometrically growing

$$\exists 1 < c_s \leqslant C_s : c_s s(n) < s(n+1) < C_s s(n)$$

$$\mathbb{E}[\|x^{(n+1)} - x^{(n)}\|^2] \asymp \mathbb{E}[\|x^{(n)} - x\|^2] \text{ if } \beta(n) - \beta(n+1) \asymp \beta(n).$$

Estimating the error?

$$\mathbb{E}[\|\mathbf{x}^{(n)} - \mathbf{x}\|^2] = s(n) + \beta(n)$$

On the other hand, in the mean:

$$\mathbb{E}[\|\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)}\|^2] = s(n+1) - s(n) + \beta(n) - \beta(n+1)$$

Choose the cut-off function $\ell(\bullet)$ for geometrically growing variance:

$$\exists 1 < c_s \leqslant C_s : c_s s(n) < s(n+1) < C_s s(n)$$

(typical: $\ell(n) = \lfloor q^n \rfloor$ for white noise and polynomial d.o.i.) Hence: $s(n+1) - s(n) \approx s(n)$ and we have

$$\mathbb{E}[\|\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)}\|^2] \simeq \mathbb{E}[\|\mathbf{x}^{(n)} - \mathbf{x}\|^2] \text{ if } \beta(n) - \beta(n+1) \simeq \beta(n).$$

Average case scenario

The mathematical setup

What functions x satisfy $\beta(n) - \beta(n+1) \approx \beta(n)$? Typical setting: $x_k^2 \approx k^{-2\alpha}$ for some $\alpha > 1/2$ suffices.

$$b(n) := \tilde{\mathbb{E}}[\beta(n)] = \tilde{\mathbb{E}}\Big[\sum_{k=\ell(n)+1}^{\infty} x_k^2\Big] = \sum_{k=\ell(n)+1}^{\infty} \gamma_k^2$$

$$\exists 1 < c_b \leqslant C_b : c_b b(n+1) < b(n) < C_b b(n+1)$$

Average case scenario

What functions x satisfy $\beta(n) - \beta(n+1) \approx \beta(n)$? Typical setting: $x_{\nu}^2 \approx k^{-2\alpha}$ for some $\alpha > 1/2$ suffices.

A far more general average case analysis is possible: Consider independent coefficients $x_k \sim N(0, \gamma_k^2)$: (denote by $\tilde{\mathbb{E}}$ the joint mean w.r.t. to noise and prior law)

$$b(n) := \tilde{\mathbb{E}}[\beta(n)] = \tilde{\mathbb{E}}\Big[\sum_{k=\ell(n)+1}^{\infty} x_k^2\Big] = \sum_{k=\ell(n)+1}^{\infty} \gamma_k^2$$

Assumption on geometric decay of average bias:

$$\exists 1 < c_b \leqslant C_b : c_b b(n+1) < b(n) < C_b b(n+1)$$

Typical setting: $\gamma_k^2 \simeq k^{-2\alpha}$ for some $\alpha > 1/2$ suffices.

Main result

Theorem

The quasi-optimality index n^* is almost surely well-defined:

$$n^* := \operatorname{argmin}_n \|\hat{x}^{(n+1)} - \hat{x}^{(n)}\|$$

and the data-driven estimator satisfies the oracle inequality

$$\widetilde{\mathbb{E}}\Big[\|\hat{\mathbf{x}}^{(n*)} - \mathbf{x}\|^{\alpha}\Big]^{1/\alpha} \leqslant K \min_{n \geqslant 1} \widetilde{\mathbb{E}}\Big[\|\hat{\mathbf{x}}^{(n)} - \mathbf{x}\|^{2}\Big]^{1/2}$$

with a constant $K = K(c_s, c_b, C_s, C_b, r, \alpha) > 0$ for all

$$0 < \alpha < \frac{r}{\max(\frac{\log(C_b)}{\log(c_b)}, \frac{\log(C_s)}{\log(c_s)})}.$$

What moments α do we attain?

$$\widetilde{\mathbb{E}}\Big[\|\hat{x}^{(n*)} - x\|^{\alpha}\Big]^{1/\alpha} \leqslant K \min_{n \geqslant 1} \widetilde{\mathbb{E}}\Big[\|\hat{x}^{(n)} - x\|^{2}\Big]^{1/2}$$

for all $0 < \alpha < r/\max(\frac{\log(C_b)}{\log(C_b)}, \frac{\log(C_s)}{\log(C_s)})$ with

$$r := \inf_{n \geqslant 1} \frac{|(s(n+1) - s(n)) + (b(n) - b(n+1))|}{\max_{\ell(n) < k \leqslant \ell(n+1)} (\sigma_k^2 + \gamma_k^2)} \geqslant 1.$$

$$\widetilde{\mathbb{E}}\Big[\|\hat{\boldsymbol{x}}^{(n*)} - \boldsymbol{x}\|^{\alpha}\Big]^{1/\alpha} \leqslant K \min_{n \geqslant 1} \widetilde{\mathbb{E}}\Big[\|\hat{\boldsymbol{x}}^{(n)} - \boldsymbol{x}\|^{2}\Big]^{1/2}$$

for all $0 < \alpha < r/\max(\frac{\log(C_b)}{\log(C_b)}, \frac{\log(C_s)}{\log(C_s)})$ with

$$r := \inf_{n \geqslant 1} \frac{|(s(n+1) - s(n)) + (b(n) - b(n+1))|}{\max_{\ell(n) < k \leqslant \ell(n+1)} (\sigma_k^2 + \gamma_k^2)} \geqslant 1.$$

Example

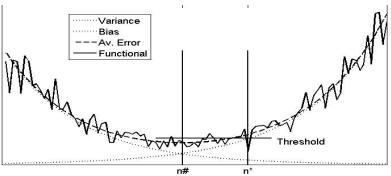
 ξ white noise, $\lambda_k \simeq k^{-\nu}$, $\ell(n) = |q^n|$, $\gamma_k \simeq k^{-\mu}$

(hence: $c_s = C_s$, $c_h = C_h$)

Then: $r \ge (\ell(2) - \ell(1)) \min((2\nu + 1)^{-1}, (2\mu + 1)^{-1})$

We attain the higher moments α , the larger q > 1.

Idea of proof



- 1. Compare n^* with index $n^\#$ such that $s(n^\# + 1) > b(n^\# + 1)$, but $s(n^\#) \le b(n^\#)$.
- 2. Derive deviation bounds for generalized χ^2 -distribution at $+\infty$ and(!) 0.
- 3. Bound uniformly the deviations from the mean errors s(n) resp. b(n).

utline The Idea The mathematical setup Main result Summary

Discussion and summary

- Heuristic quasi-optimality criterion works well in practice.
- Counterexamples à la Bakushinskii show that it does not always work.
- The quasi-optimality criterion estimates the MSE for geometric s(n) and b(n) without using the noise level.
- Average case analysis with geometrically decaying weights in the coefficients.
- We obtain a general oracle-type inequality.
- The sparser the subsampling ℓ(•), the higher the moments we achieve.
- Generalisation to other methods than TSVD seem feasible.

Thank you very much for your attention!

utline The Idea The mathematical setup Main result Summary

Discussion and summary

- Heuristic quasi-optimality criterion works well in practice.
- Counterexamples à la Bakushinskii show that it does not always work.
- The quasi-optimality criterion estimates the MSE for geometric s(n) and b(n) without using the noise level.
- Average case analysis with geometrically decaying weights in the coefficients.
- We obtain a general oracle-type inequality.
- The sparser the subsampling ℓ(•), the higher the moments we achieve.
- Generalisation to other methods than TSVD seem feasible.

Thank you very much for your attention!