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Ordered regularizations

This talk deals with recovering θ = (θ(1), . . . , θ(n))> ∈ Rn from
the noisy data

Y = Aθ + σξ,

where

A is a known m × n - matrix with m ≥ n

ξ ∈ Rn is a standard white Gaussian noise with

Eξ(k)ξ(l) = δkl , k, l = 1, . . . ,m

n is large (infinity).

σ may be known or unknown.

Example: the linear model can be used to approximate the
equation

y(u) =

∫
A(u, v)θ(v) dv + ε(u).
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Maximum likelihood estimator

The standard ML estimator is defined by

θ̂0 = arg min
θ∈Rn

‖Y − Aθ‖2, where ‖x‖2 =
m∑

k=1

x2(k).

With a simple algebra we obtain /Moore (1920), Penrose (1955)/

θ̂0 = (A>A)−1A>Y .
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Risk of the MP inversion

The risk of this inversion is computed as follows:

E‖θ̂0 − θ‖2 = E‖(A>A)−1A>ε‖2 = σ2
n∑

k=1

λk ,

where λk are the eigenvalues of (A>A)−1

λkA>Aψk = ψk , λ1 ≤ λ2, . . . ,≤ λn

and ψk ∈ Rn are the eigenvectors of A>A.

If A has a large condition number or n is large, the risk of θ̂0 may
be very large.
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Spectral regularization

The basic idea in the spectral regularization is to suppress large λk

in the risk of θ̂0. We smooth θ̂0 with the help of a properly chosen
matrixes Hα, α ∈ R+

θ̂α = Hαθ̂0 = Hα

[
(A>A)−1

]
(A>A)−1A>Y ,

where Hα

[
(A>A)−1

]
(s, l) =

n∑
k=1

Hα(λk)ψs(k)ψl(k).

Typically limα→0 Hα(λ) = 1, limλ→∞Hα(λ) = 0 for all α > 0.

α is called regularization parameter.
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Bias-variance decomposition

For the risk of θ̂α we get a standard bias-variance decomposition

E‖θ̂α − θ‖2 =
n∑

k=1

[
1− Hα(λk)

]2〈θ, ψk〉2 + σ2
n∑

k=1

λkH2
α(λk),

where 〈θ, ψk〉 =
n∑

l=1

θ(l)ψk(l).

Remarks:

The spectral regularization may improve substantially θ̂0 when
〈θ, ψk〉2 are small for large k.

The best regularization parameter depends on θ and therefore
it should be data-driven.
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Spectral cut-off (requires the SVD)

Hα(λ) = 1{αλ ≤ 1}.

Tikhonov’s regularization

θ̂α = arg min
θ

{
‖Y − Aθ‖2 + α‖θ‖2

}
or, equivalently,

θ̂α = [αI + A>A]−1A>Y , Hα(λ) = (1 + αλ)−1.

Landweber’s iterations (solve A>Y = A>Aθ)

θ̂i =
[
I − a−1A>A

]
θ̂i−1 + a−1A>Y .

The iterations converge if aλ1 < 1. It is easy to check that

Hα(λ) = 1−
[
1− (aλ)−1

]1/α
, α = 1/(i + 1).
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Ordered functions

In the above examples the families of functions (smoothers)
Hα(·), α ∈ R+ are ordered (see Kneip (1995))

0 ≤ Hα(λ) ≤ 1

for all λ ∈ R+ Hα1(λ) ≥ Hα2(λ), α1 ≤ α2.
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Our goal is to find the best estimate within the family spectral
regularization methods

θ̂α = Hα[(A>A)−1](A>A)−1A>Y , α ∈ [0, α◦].

In other words, we are looking for α̂ that minimizes

E‖θ − θ̂α̂‖2 uniformly in θ ∈ Rn.

This idea puts into practice with the help of the empirical risk
minimization principle :

α̂ = arg min
α

Rα[Y ], where Rα[Y ] = ‖θ̂0 − θ̂α‖2 + σ2Pen(α),

and Pen(α) : (0, α◦]→ R+ is a given function of α.
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A good data-driven regularization should minimize in some sense
the risk

Lα(θ) = E‖θ − θ̂α‖2.

This is why, we are looking for a minimal penalty that ensures the
following inequality

Lα(θ) . Rα[Y ] + C,

where C is a random variable that doesn’t depend on α and θ. It is
easy to check that

C = −‖θ − θ̂0‖2 = −σ2
n∑

k=1

λkξ
2(k)

Traditional approach to solve this inequality is based on the
unbiased risk estimation defining the penalty as a root of the
equation

Lα(θ) = ERα[Y ] + EC.
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Excess risk penalties

Unfortunately, thus obtained penalty is not good for ill-posed
problems (see e.g. Cavalier and Golubev (2006)).
The main idea in this talk is to compute the penalty in a little bit
different way, namely as a minimal root of the equation

E sup
α≤α◦

[
Lα(θ)− Rα[Y ]− C

]
+
≤ KE

[
Lα◦(θ)− Rα◦ [Y ]− C

]
+
,

where [x ]+ = max{0, x} and K > 1 is a constant.
Heuristic motivation: we are looking for the minimal penalty
balancing the all excess risks.
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It finds out that for ordered smoothers the penalty may be found
as a solution of the marginal equation

E
[
Lα(θ)− Rα[Y ]− C

]
+
≤ E

[
Lα◦(θ)− Rα◦ [Y ]− C

]
+
, α ∈ [0, α◦]

To compute the penalty, we assume that it has the following
structure

Pen(α) = 2
n∑

k=1

λkHα[λk ] + (1 + γ)Q(α),

where 2
∑n

k=1 λkHα[λk ] is the penalty related to the unbiased risk
estimation. γ is a positive number and Q(α), α > 0 is a positive
function of α to be defined later on.
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The large deviation approach results in the following algorithm for
computing

Q(α) = 2D(α)µα

n∑
k=1

ρ2
α(k)

1− 2µαρα(k)
,

where

D2(α) =2
n∑

k=1

λ2
k

{
2Hα[λk ]− H2

α[λk ]
}2
,

ρα(k) =
√

2D−1(α)λk

{
2Hα[λk ]− H2

α[λk ]
}
,

where µα is a root of equation

n∑
k=1

F [µαρα(k)] = log
D(α)

D(α◦)
, F (x) =

1

2
log(1− 2x) + x +

2x2

1− 2x
.
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The following theorem provides the so-called oracle inequality
which controls the performance of the method of the empirical risk
minimization via the so-called penalized oracle risk defined by

r(θ)
def
= inf

α≤α◦
R̄α[θ],

where

R̄α[θ]
def
= Eθ

{
Rα[Y ] + C

}
= E‖θ − θ̂α‖2 + (1 + γ)σ2Q(α).

Theorem

Uniformly in θ ∈ Rn,

Eθ‖θ − θ̂α̂‖2 ≤ r(θ)

[
1 +

C

γ4
log−1/2 Cr(θ)

σ2γD(α◦)

]
.
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This result represents a particular form of the so-called oracle
inequality

Eθ‖θ − θ̂α̂‖2 ≤ r(θ) + r(θ)Φ

[
σ2D(α◦)

r(θ)

]
,

where Φ(·) is a bounded function such that limx→0 Φ(x) = 0. In
other words, this inequality says that if the ratio σ2D(α◦)/r(θ) is
small then the risk of the method is close to the risk of the
penalized oracle. On the other hand, if this ratio isn’t small, then
the risk of the method is of order of the oracle risk.
Note also that our oracle inequality holds whatever is the
ill-posedness of the underlying inverse problem. What depends on
the ill-posedness is solely the extra penalty (1 + γ)σ2Q(α).
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For Q(α) we have the following bounds

D(α)
√

log[D(α)/D(α◦)] ≤ Q(α) ≤ CD(α) log[D(α)/D(α◦)].

Therefore, if the inverse problem is not severely ill-posed, i.e.
λ(k) ≤ Ckβ, then for small α

n∑
k=1

λkH2
α[λk ]� Q(α).

So, the risk of penalized oracle is close to the risk of the ideal
oracle infα≤α◦ E‖θ − θ̂α‖2.
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On the other hand, if the inverse problem is severely ill-posed, i.e.
λ(k) ≈ exp(βk), then

n∑
k=1

λkH2
α[λk ]� Q(α)

and the risk of penalized oracle is essentially greater than that one
of the ideal oracle. However, neither this upper bound nor the
extra penalty can be improved.
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Now we consider the case where σ is unknown. To chose α in this
situation, we plug-in a standard estimator for σ2 in the penalized
empirical risk, thus arriving at the following formula for the
empirical risk

Rσ
α [Y ]

def
= ‖θ̂0 − θ̂α‖2 +

‖Y − Aθ̂α‖2

‖1− Hα‖2
Pen(α).

Finally, we compute the data-driven regularization parameter as
follows:

α̂ = arg min
α◦≤α≤α◦

Rσ
α [Y ].
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The following theorem controls the performance of the method of
the empirical risk minimization via the penalized oracle risk defined
by

r(θ)
def
= inf

α◦≤α≤α◦
R̄σ
α [θ],

where

R̄σ
α [θ]

def
= Eθ

{
Rα[Y ] + C

}
= E‖θ − θ̂α‖2 + (1 + γ)σ2Q(α)

+
Pen(α)

‖1− Hα‖2

n∑
k=1

{
1− Hα[λ(k)]

}2 θ2(k)

λ(k)
.
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Denote also for brevity

‖Hα‖2
λ =

n∑
k=1

λ(k)H2
α[λ(k)],

Ψ(x) =x log2(exp(1) + x),

Σα =‖1− Hα‖

√
2 log log

‖1− Hα◦‖ exp(2)

‖1− Hα‖
.

q = max
α∈[α◦,α◦]

47Pen(α)Σα log
[
Q◦(α) + ‖Hα‖2

λ

]
Σα◦‖1− Hα‖2[Q◦(α) + ‖Hα‖2

λ]

≈
√

log log(n)

n
max

α∈[α◦,α◦]

Pen(α) log[‖Hα‖2
λ + Q(α)]

[‖Hα‖2
λ + Q(α)]

.
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Theorem

Uniformly in θ ∈ Rn,

Eθ‖θ − θ̂α̂‖2 ≤[1 + C Ψ(q)]r(θ)

+
Cr(θ)

[1− C Ψ(q)]γ4
log−1/2 Cr(θ)

σ2γD(α◦)
.
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There are two main distinctions with respect to the case where the
noise variance is known. The first one is that in the penalized
oracle risk there is an additional term, namely

Pen(α)

‖1− Hα‖2

n∑
k=1

{
1− Hα[λ(k)]

}2 θ2(k)

λ(k)
.

Since
n∑

k=1

{
1− Hα[λ(k)]

}2 θ2(k)

λ(k)
≤ E‖θ − θ̂α‖2

and we may chose α◦ so that ‖1−Hα‖2 ≥ Cn and Pen(α)� n for
all α ≥ α◦, this term is typically small.
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The second distinction is related to the parameter

q &

√
log log(n)

n
max

α∈[α◦,α◦]

log
[
Q(α)

]∑n
k=1 λkHα(λk)[∑n

k=1 λkH2
α(λk) + Q(α)

]
which is typically small but for some regularization methods it may
be large. Indeed, for Tikhonov’s regularization with
λ(k) � kβ, β > 1, we have

n∑
k=1

λkHα(λk) � n

α
, Q(α) ≈

√
n

α
log

√
n

α
.

So, q � C
√

log log(n), thus demonstrating that the oracle
inequality blows up.
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